Original entry on oeis.org
1, 2, 11, 74, 602, 5452, 53559, 558602, 6106034, 69298580, 811086718, 9740402476, 119550632788, 1495039156600, 19002275811887, 244983878813514, 3198363309664658, 42225545561470084, 563083734161627910, 7576864105285884420, 102790882283750139060, 1404908982711268821720
Offset: 1
-
List([1..20], n->Sum([1..n], m->(Binomial(n-1, m-1)*Binomial(n, m-1)/m)^2));
-
[(&+[(Binomial(n-1,j-1)*Binomial(n,j-1)/j)^2 : j in [1..n]]): n in [1..25]]; // G. C. Greubel, Feb 15 2021
-
a := n -> add(binomial(n-1, m-1)^2*binomial(n, m-1)^2/m^2, m = 1 .. n): seq(a(n), n = 1 .. 20)
-
Table[HypergeometricPFQ[{1-n,1-n,-n,-n},{1,2,2},1],{n,1,20}]
-
a(n) = sum(m=1, n, (binomial(n-1, m-1)*binomial(n, m-1)/m)^2);
-
[hypergeometric([-n, -n, -n+1, -n+1], [1, 2, 2], 1).simplify_hypergeometric() for n in (1..25)] # G. C. Greubel, Feb 15 2021
A111910
Square array read by antidiagonals: S(p,q) = (p+q+1)!(2p+2q+1)!/((p+1)!(2p+1)!(q+1)!(2q+1)!) (p,q>=0).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 84, 30, 1, 1, 55, 330, 330, 55, 1, 1, 91, 1001, 2145, 1001, 91, 1, 1, 140, 2548, 10010, 10010, 2548, 140, 1, 1, 204, 5712, 37128, 68068, 37128, 5712, 204, 1, 1, 285, 11628, 116280, 352716, 352716, 116280, 11628, 285, 1
Offset: 0
Array S(n,k) in rectangular form (n, k >= 0):
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 5, 14, 30, 55, 91, 140, 204, 285, ...
1, 14, 84, 330, 1001, 2548, 5712, 11628, 21945, ...
1, 30, 330, 2145, 10010, 37128, 116280, 319770, 793155, ...
1, 55, 1001, 10010, 68068, 352716, 1492260, 5393454, 17185025, ...
...
Array T(n,k) in triangular form (n >= 0 and 0 <= k <= n):
1,
1, 1,
1, 5, 1,
1, 14, 14, 1,
1, 30, 84, 30, 1,
1, 55, 330, 330, 55, 1,
1, 91, 1001, 2145, 1001, 91, 1,
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Germain Kreweras and Heinrich Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin. 2 (1981), 55-60.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 9.
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
-
T:= func< n,k | Binomial(n+1, k)*Binomial(2*n+1, 2*k)/((k+1)*(2*k+1)) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
a:=(p,q)->(p+q+1)!*(2*p+2*q+1)!/(p+1)!/(2*p+1)!/(q+1)!/(2*q+1)!: for n from 0 to 10 do seq(a(j,n-j),j=0..n) od; # yields sequence in triangular form
-
Table[(# + q + 1)! (2 # + 2 q + 1)!/((# + 1)! (2 # + 1)! (q + 1)! (2 q + 1)!) &[r - q], {r, 0, 9}, {q, 0, r}] // Flatten (* Michael De Vlieger, Oct 21 2019 *)
Table[Binomial[n+1, k]*Binomial[2*n+1, 2*k]/((k+1)*(2*k+1)), {n, 0, 12}, {k, 0,
n}]//Flatten (* G. C. Greubel, Feb 12 2021 *)
-
def A111910(n,k): return binomial(n+1, k)*binomial(2*n+1, 2*k)/((k+1)*(2*k+1))
flatten([[A111910(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A174696
Triangle T(n, k) = n!*(1/k)^2*(binomial(n-1, k-1)*binomial(n, k-1))^2 - n! + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 49, 1, 1, 841, 841, 1, 1, 11881, 47881, 11881, 1, 1, 161281, 1799281, 1799281, 161281, 1, 1, 2217601, 55560961, 154344961, 55560961, 2217601, 1, 1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1, 1, 469929601, 40967337601, 501853968001, 1129171881601, 501853968001, 40967337601, 469929601, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 49, 1;
1, 841, 841, 1;
1, 11881, 47881, 11881, 1;
1, 161281, 1799281, 1799281, 161281, 1;
1, 2217601, 55560961, 154344961, 55560961, 2217601, 1;
1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1;
-
A174696:= func< n, k | (Factorial(n)/k^2)*(Binomial(n-1, k-1)*Binomial(n, k-1))^2 - Factorial(n) + 1 >;
[A174696(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
-
T[n_, m_]:= n!*(1/k)^2*(Binomial[n-1, k-1]*Binomial[n, k-1])^2 - n! + 1;
Table[T[n, k], {n,12}, {k,n}]//Flatten
-
def A174696(n, k): return (factorial(n)/k^2)*(binomial(n-1, k-1)*binomial(n, k-1))^2 - factorial(n) + 1
flatten([[A174696(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
Showing 1-3 of 3 results.