cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A018253 Divisors of 24.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 24
Offset: 1

Views

Author

Keywords

Comments

The divisors of 24 greater than 1 are the only positive integers n with the property m^2 == 1 (mod n) for all integer m coprime to n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001
Numbers n for which all Dirichlet characters are real. - Benoit Cloitre, Apr 21 2002
These are the numbers n that are divisible by all numbers less than or equal to the square root of n. - Tanya Khovanova, Dec 10 2006 [For a proof, see the Tauvel paper in references. - Bernard Schott, Dec 20 2012]
Also, numbers n such that A160812(n) = 0. - Omar E. Pol, Jun 19 2009
It appears that these are the only positive integers n such that A160812(n) = 0. - Omar E. Pol, Nov 17 2009
24 is a highly composite number: A002182(6)=24. - Reinhard Zumkeller, Jun 21 2010
Chebolu points out that these are exactly the numbers for which the multiplication table of the integers mod n have 1s only on their diagonal, i.e., ab == 1 (mod n) implies a = b (mod n). - Charles R Greathouse IV, Jul 06 2011
It appears that 3, 4, 6, 8, 12, 24 (the divisors >= 3 of 24) are also the only numbers n whose proper non-divisors k are prime numbers if k = d-1 and d divides n. - Omar E. Pol, Sep 23 2011
About the last Pol's comment: I have searched to 10^7 and have found no other terms. - Robert G. Wilson v, Sep 23 2011
Sum_{i=1..8} A000005(a(i))^3 = (Sum_{i=1..8} A000005(a(i)))^2, see Kordemsky in References and Barbeau et al. in Links section. - Bruno Berselli, Dec 29 2014

Examples

			Square root of 12 = 3.46... and 1, 2 and 3 divide 12.
From the tenth comment: 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 6^3 + 8^3 = (1+2+2+3+4+4+6+8)^2 = 900. - _Bruno Berselli_, Dec 28 2014
		

References

  • Harvey Cohn, "Advanced Number Theory", Dover, chap.II, p. 38
  • Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.
  • Patrick Tauvel, "Exercices d'algèbre générale et d'arithmétique", Dunod, 2004, exercice 70 page 368.

Crossrefs

Cf. A000005, A158649. - Bruno Berselli, Dec 29 2014
Cf. A303704 (with respect to Astudillo's 2001 comment above).

Programs

Formula

a(n) = A161710(n-1). - Reinhard Zumkeller, Jun 21 2009

A080683 23-smooth numbers: numbers whose prime divisors are all <= 23.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 92, 95
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Coincides for the first 111 terms with A174228 (divisors of 24!). - Bruno Berselli, Sep 24 2012

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080682.

Programs

  • Magma
    [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(23)]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    select(t -> max(numtheory:-factorset(t)) <= 23, [$1..1000]); # Robert Israel, Jan 22 2016
  • Mathematica
    mx = 100; Sort@ Flatten@ Table[ 2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}, {d, 0, Log[7, mx/(2^a*3^b*5^c)]}, {e, 0, Log[11, mx/(2^a*3^b*5^c*7^d)]}, {f, 0, Log[13, mx/(2^a*3^b*5^c*7^d*11^e)]}, {g, 0, Log[17, mx/(2^a*3^b*5^c*7^d*11^e*13^f)]}, {h, 0, Log[19, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g)]}, {i, 0, Log[23, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h)]}] (* Robert G. Wilson v, Jan 19 2016 *)
  • PARI
    test(n)=m=n; forprime(p=2,23, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,100,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=23)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=23): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 72))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080683(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,23)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 23} p/(p-1) = (2*3*5*7*11*13*17*19*23)/(1*2*4*6*10*12*16*18*22) = 676039/110592. - Amiram Eldar, Sep 22 2020

A155182 Divisors of 12!.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 99, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 154, 160
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 21 2009

Keywords

Comments

The sequence is finite with A027423(12) = 792 terms:
a(792) = A000142(12) = 479001600 is the last term.

Examples

			Last ten numbers: 47900160, 53222400, 59875200, 68428800, 79833600, 95800320, 119750400, 159667200, 239500800, 479001600. - _Zerinvary Lajos_, Jun 13 2009
		

Crossrefs

Subsequence of A051038.
Cf. A174228. - Reinhard Zumkeller, May 24 2010

Programs

  • Mathematica
    Divisors[12!][[;;100]] (* Paolo Xausa, Jul 31 2024 *)
  • PARI
    divisors(12!)
  • Sage
    divisors(factorial(12)) # Zerinvary Lajos, Jun 13 2009
    
Showing 1-3 of 3 results.