A174973 Numbers whose divisors increase by a factor of at most 2.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 256
Offset: 1
Keywords
Examples
The divisors of 12 are 1, 2, 3, 4, 6, 12. The ratios of adjacent divisors is 2, 3/2, 4/3, 3/2, and 2, which are all <= 2. Hence 12 is in this sequence. Example from _Omar E. Pol_, Mar 06 2014: (Start) The symmetric representation of sigma(6) = 12 in the first quadrant looks like this: y . ._ _ _ _ |_ _ _ |_ . | |_ . |_ _ | . | | . | | . . . . . |_| . . x . 6 is in the sequence because the symmetric representation of sigma(6) = 12 has only one part. The 6th row of A237593 is [4, 1, 1, 1, 1, 4] and the 5th row of A237593 is [3, 2, 2, 3] therefore between both symmetric Dyck paths there is only one region (or part) of size 12. 70 is not in the sequence because the symmetric representation of sigma(70) = 144 has three parts. The 70th row of A237593 is [36, 12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 12, 36] and the 69th row of A237593 is [35, 12, 7, 4, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 7, 12, 35] therefore between both symmetric Dyck paths there are three regions (or parts) of size [54, 36, 54]. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
- José Manuel Rodríguez Caballero, Jordan's Expansion of the Reciprocal of Theta Functions and 2-densely Divisible Numbers, Integers, Vol. 20 (2020), Article A2.
- Hartmut F. W. Hoft, Proof of a conjecture.
- Hartmut F. W. Hoft, Proof of a second conjecture.
- Eric Saias, Entiers à diviseurs denses 1, Journal of Number Theory, Vol. 62, No. 1 (1997), pp. 163-191.
- Terence Tao, A Truncated Elementary Selberg Sieve of Pintz. (blog entry defining y-densely divisible)
- Terence Tao et al., Polymath8 home page.
- Andreas Weingartner, Practical numbers and the distribution of divisors, The Quarterly Journal of Mathematics, Vol. 66, No. 2 (2015), pp. 743-758; arXiv preprint, arXiv:1405.2585 [math.NT], 2014-2015.
- Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp., Vol. 88, No. 318 (2019), pp. 1883-1902; arXiv preprint, arXiv:1705.06349 [math.NT], 2017-2018.
- Andreas Weingartner, The number of prime factors of integers with dense divisors, arXiv:2101.11585 [math.NT], 2021.
- Andreas Weingartner, Uniform distribution of alpha*n modulo one for a family of integer sequences, arXiv:2303.16819 [math.NT], 2023.
Crossrefs
Programs
-
Haskell
a174973 n = a174973_list !! (n-1) a174973_list = filter f [1..] where f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 2) divs) where divs = a027750_row' n -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
-
Magma
[k:k in [1..260]|forall{i:i in [1..#Divisors(k)-1]|d[i+1]/d[i] le 2 where d is Divisors(k)}]; // Marius A. Burtea, Jan 09 2020
-
Maple
a:= proc() option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while (l-> ormap(x-> x, [seq(l[i]>l[i-1]*2, i=2.. nops(l))]))(sort([(numtheory[divisors](k))[]])) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 27 2018
-
Mathematica
OK[n_] := Module[{d=Divisors[n]}, And@@(#<=2& /@ (Rest[d]/Most[d]))]; Select[Range[1000], OK] dif2Q[n_]:=AllTrue[#[[2]]/#[[1]]&/@Partition[Divisors[n],2,1],#<=2&]; Select[Range[300],dif2Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 29 2020 *)
-
PARI
is(n)=my(d=divisors(n));for(i=2,#d,if(d[i]>2*d[i-1],return(0)));1 \\ Charles R Greathouse IV, Jul 06 2013
-
Python
from sympy import divisors def ok(n): d = divisors(n) return all(d[i]/d[i-1] <= 2 for i in range(1, len(d))) print(list(filter(ok, range(1, 257)))) # Michael S. Branicky, Jun 22 2021
Formula
a(n) = A047836(n) / 2. - Reinhard Zumkeller, Sep 28 2011
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.816439... (see comments). - Andreas Weingartner, Jun 23 2021
Extensions
Edited by N. J. A. Sloane, Sep 09 2023
Edited by Peter Munn, Oct 17 2023
Comments