cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175386 a(n) = denominator of sum((1/i)*C(2n-i-1,i-1),i=1..n).

Original entry on oeis.org

1, 2, 6, 4, 5, 4, 7, 8, 18, 10, 11, 24, 13, 14, 30, 16, 17, 12, 19, 20, 42, 22, 23, 48, 25, 26, 54, 28, 29, 20, 31, 32, 66, 34, 35, 72, 37, 38, 78, 40, 41, 28, 43, 44, 90, 46, 47, 96, 49, 50, 6, 52, 53, 36, 55, 56, 114, 58, 59, 120, 61, 62, 126, 64, 65, 44, 67, 68, 138, 70, 71
Offset: 1

Views

Author

Keywords

Comments

We conjecture that sum((1/i)*C(2n-i-1,i-1),i=1..n) is not an integer for n>1.

Crossrefs

Cf. A175385.

Programs

  • Mathematica
    Table[Denominator[Sum[(1/i)*Binomial[2n-i-1,i-1],{i,1,n}]],{n,1,150}]

Formula

According to Mathematica, sum((1/i)*C(2n-i-1,i-1), i=1..n)=
(Hypergeometric2F1[1/2-n,-n,1-2 n,-4]-1)/(2 n).

A189731 a(n) = numerator of B(0,n) where B(n,n) = 0, B(n-1,n) = 1/n, and B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

0, 1, 1, 3, 2, 17, 4, 23, 25, 61, 18, 107, 40, 421, 1363, 1103, 210, 5777, 492, 7563, 24475, 19801, 2786, 103681, 33552, 135721, 146401, 355323, 39650, 1860497, 97108, 2435423, 2627065, 6376021, 20633238, 11128427, 1459960, 43701901
Offset: 0

Views

Author

Paul Curtz, Apr 26 2011

Keywords

Comments

Square array B(m,n) begins:
0, 1/1, 1/1, 3/2, 2/1, 17/6, ...
1/1, 0, 1/2, 1/2, 5/6, 7/6, ...
-1/1, 1/2, 0, 1/3, 1/3, 7/12, ...
3/2, -1/2, 1/3, 0, 1/4, 1/4, ...
-2/1, 5/6, -1/3, 1/4, 0, 1/5, ...
17/6, -7/6, 7/12, -1/4, 1/5, 0, ...
The inverse binomial transform of B(0,n) gives B(n,0) and thus it is an eigensequence in the sense that it remains the same (up to a sign) under inverse binomial transform.
The bisection of B(0,n) (odd part) gives A175385/A175386, and thus a(2*n+1) = A175385(n+1).

Crossrefs

Cf. A000204, A242926 (denominators).

Programs

  • Maple
    B:= proc(m, n) option remember;
          if m=n then 0
        elif n=m+1 then 1/n
        elif n>m then B(m, n-1) +B(m+1, n-1)
        else B(m-1, n+1) -B(m-1, n)
          fi
        end:
    a:= n-> numer(B(0, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 29 2011
  • Mathematica
    Rest[Numerator[Abs[CoefficientList[Normal[Series[Log[1 - x^2/(1 + x)], {x, 0, 40}]], x]]]] (* Vaclav Kotesovec, Jul 07 2020 *)
    Table[Numerator[(LucasL[n]-1)/n],{n,1,38}] (* Artur Jasinski, Oct 21 2022 *)

Formula

Numerator of (A000204(n) - 1)/n. - Artur Jasinski, Oct 21 2022
Showing 1-2 of 2 results.