cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A189731 a(n) = numerator of B(0,n) where B(n,n) = 0, B(n-1,n) = 1/n, and B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

0, 1, 1, 3, 2, 17, 4, 23, 25, 61, 18, 107, 40, 421, 1363, 1103, 210, 5777, 492, 7563, 24475, 19801, 2786, 103681, 33552, 135721, 146401, 355323, 39650, 1860497, 97108, 2435423, 2627065, 6376021, 20633238, 11128427, 1459960, 43701901
Offset: 0

Views

Author

Paul Curtz, Apr 26 2011

Keywords

Comments

Square array B(m,n) begins:
0, 1/1, 1/1, 3/2, 2/1, 17/6, ...
1/1, 0, 1/2, 1/2, 5/6, 7/6, ...
-1/1, 1/2, 0, 1/3, 1/3, 7/12, ...
3/2, -1/2, 1/3, 0, 1/4, 1/4, ...
-2/1, 5/6, -1/3, 1/4, 0, 1/5, ...
17/6, -7/6, 7/12, -1/4, 1/5, 0, ...
The inverse binomial transform of B(0,n) gives B(n,0) and thus it is an eigensequence in the sense that it remains the same (up to a sign) under inverse binomial transform.
The bisection of B(0,n) (odd part) gives A175385/A175386, and thus a(2*n+1) = A175385(n+1).

Crossrefs

Cf. A000204, A242926 (denominators).

Programs

  • Maple
    B:= proc(m, n) option remember;
          if m=n then 0
        elif n=m+1 then 1/n
        elif n>m then B(m, n-1) +B(m+1, n-1)
        else B(m-1, n+1) -B(m-1, n)
          fi
        end:
    a:= n-> numer(B(0, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 29 2011
  • Mathematica
    Rest[Numerator[Abs[CoefficientList[Normal[Series[Log[1 - x^2/(1 + x)], {x, 0, 40}]], x]]]] (* Vaclav Kotesovec, Jul 07 2020 *)
    Table[Numerator[(LucasL[n]-1)/n],{n,1,38}] (* Artur Jasinski, Oct 21 2022 *)

Formula

Numerator of (A000204(n) - 1)/n. - Artur Jasinski, Oct 21 2022

A175385 a(n) = numerator of Sum_{i=1..n} binomial(2n-i-1,i-1)/i.

Original entry on oeis.org

1, 3, 17, 23, 61, 107, 421, 1103, 5777, 7563, 19801, 103681, 135721, 355323, 1860497, 2435423, 6376021, 11128427, 43701901, 114413063, 599074577, 784198803, 2053059121, 10749957121, 14071876561, 36840651123, 192900153617
Offset: 1

Views

Author

Keywords

Comments

We conjecture that Sum_{i=1..n} ((1/i)*C(2n-i-1,i-1)) is not an integer for n>1.

Crossrefs

Cf. A175386 (denominator).

Programs

  • Mathematica
    Table[Numerator[Sum[(1/i)*Binomial[2n-i-1,i-1],{i,1,n}]],{n,1,50}]

Formula

Sum_{i=1..n} C(2n-i-1,i-1)/i = (2F1(1/2-n,-n;1-2 n;-4) -1)/(2n), where 2F1 is the Gaussian Hypergeometric Function.

A242926 a(n) = denominator of B(0,n), where B(n,n) = 0, B(n-1,n) = 1/n and otherwise B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 5, 1, 4, 1, 7, 15, 8, 1, 18, 1, 10, 21, 11, 1, 24, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 35, 12, 1, 19, 39, 20, 1, 42, 1, 22, 9, 23, 1, 48, 7, 25, 17, 26, 1, 54, 55, 28, 19, 29, 1, 20, 1
Offset: 0

Views

Author

Paul Curtz, May 26 2014

Keywords

Comments

The numerators are A189731(n).
B(0,n) = 0, 1, 1, 3/2, 2, 17/6, 4, 23/4, 25/3, 61/5, 18, 107/4, 40, 421/7, ...
is a super autosequence as defined in A242563.
The positive integers in B(0,n) give A064723(n). Corresponding rank: A006093(n+1). B(0,n) is linked to the primes A000040.
Divisor of B(0,n), n > 0: 1, 1, 1, 2, 2, 4, 5, ... = A172128(n+1).
Common (LCM) denominators for the antidiagonals: 1, 1, 1, 2, 2, 6, 6, 12, 12, ... = A139550(n+1)?.
1 = 1
1/2 + 3/2 = 2
1/3 + 5/6 + 17/6 = 4
1/4 + 7/12 + 7/4 + 23/4 = 25/3
etc.
The positive terms of the first bisection are the sum of the corresponding antidiagonal terms upon the 0's.
0 followed by A001610(n), i.e., 0, 0, 2, 3, 6, 10, 17, ... is an autosequence of the second kind.

Crossrefs

Programs

  • Mathematica
    Table[Denominator[(LucasL[n+1]-1)/(n+1)], {n, 0, 100}] (* Artur Jasinski, Nov 06 2022 *)

Formula

a(2n+1) = A175386(n).
a(n) = denominator(A001610(n)/(n+1)). [edited by Michel Marcus, Nov 14 2022]
a(n) = denominator((A000204(n+1) - 1)/(n+1)). - Artur Jasinski, Nov 06 2022

Extensions

a(24)-a(60) from Jean-François Alcover, May 26 2014
Showing 1-3 of 3 results.