A175495 Positive integers k such that k < 2^d(k), where d(k) is the number of divisors of k.
1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 154, 156
Offset: 1
Keywords
References
- K. Prachar, Primzahlverteilung, Springer-Verlag, 1957, Ch. 1, Theorem 5.2.
- S. Ramanujan, Highly composite numbers, Collected papers, Cambridge, 1927, 85-86.
- A. Wiman, Sur l'ordre de grandeur du nombre de diviseurs d'un entier, Arkiv Mat. Astr. och Fys., 3, no. 18 (1907), 1-9.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t = {}; n = 0; While[Length[t] < 100, n++; If[n < 2^DivisorSigma[0, n], AppendTo[t, n]]]; t (* T. D. Noe, May 14 2013 *) Select[Range[200],#<2^DivisorSigma[0,#]&] (* Harvey P. Dale, Apr 24 2015 *)
-
PARI
isok(n) = n < 2^numdiv(n); \\ Michel Marcus, Sep 09 2019
-
Python
from sympy import divisor_count def ok(n): return n < 2**divisor_count(n) print(list(filter(ok, range(1, 157)))) # Michael S. Branicky, Jul 29 2021
Extensions
More terms from Jon E. Schoenfield, Jun 13 2010
Comments