cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A034884 Numbers k such that k < d(k)^2, where d(k) = A000005(k).

Original entry on oeis.org

2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 96, 108, 120, 126, 132, 140, 144, 168, 180, 192, 210, 216, 240, 252, 288, 300, 336, 360, 420, 480, 504, 540, 720, 840, 1260
Offset: 1

Views

Author

Keywords

Comments

See comment in A175495. - Vladimir Shevelev, May 07 2013
The deficient terms are 2, 3, 4, 8, 10, 14, 15, 16, 32; the first perfect or abundant number not listed is 66 = 2 * 3 * 11; the only term not 7-smooth is 132 = 2^2 * 3 * 11; the largest not divisible by 6 is 140 = 2^2 * 5 * 7. - Peter Munn, Sep 19 2021
The union of this sequence and A276734 has 74 total terms which are all k with floor(sqrt(k)) <= d(k). - Bill McEachen, Apr 07 2023

Crossrefs

Programs

  • Mathematica
    Select[Range[1300],#Harvey P. Dale, Apr 11 2014 *)
  • PARI
    isok(n) = (n < numdiv(n)^2) \\ Michel Marcus, Jun 07 2013

Extensions

Labos Elemer added the last three terms and observes that this sequence is now complete.

A056757 Cube of number of divisors is larger than the number.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110
Offset: 1

Views

Author

Labos Elemer, Aug 16 2000

Keywords

Comments

Sequence is finite with 51261 terms. - Charles R Greathouse IV, Apr 27 2011 [Corrected by Amiram Eldar, Jun 02 2024]
The last odd term is a(15199) = 883575. The odd terms are in A056761. - T. D. Noe, May 14 2013

Examples

			k = 27935107200 = 128*27*25*7*11*13*17*19 has 3072 divisors, 3072^3/k = 1.03779..., so k is a term.
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0,n]^3, AppendTo[t, n]], {n, 10^3}]; t (* T. D. Noe, May 14 2013 *)
    Select[Range[120],DivisorSigma[0,#]^3>#&] (* Harvey P. Dale, Apr 22 2019 *)
  • PARI
    is(n)=numdiv(n)^3>n \\ Charles R Greathouse IV, Sep 14 2015

Formula

{ k : A000005(k)^3 > k}.

A225729 Numbers n such that n < d(n)^(21/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 90, 96, 100, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 168, 180, 192, 210, 216, 240, 252, 264, 270, 280, 288, 300, 312, 330, 336, 360, 396
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^10 < d(n)^21. The last odd number is a(10) = 15.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(21/10), AppendTo[t, n]], {n, 10^4}]; t

A225730 Numbers k such that k < d(k)^(22/10), where d(k) is the number of divisors of k.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 168, 180, 192, 198, 200, 204, 210, 216, 220, 224, 228, 234
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write k^5 < d(k)^11. The last odd number is a(23) = 45.

Crossrefs

Cf. A000005, A034884 (k < d(k)^2), A175495 (k < 2^d(k)), A056757 (k < d(k)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(22/10), AppendTo[t, n]], {n, 10^5}]; t
    Select[Range[250],#Harvey P. Dale, Apr 10 2024 *)
  • PARI
    for (k=2, 20000, if (k^5 < numdiv(k)^11, print1(k,", "))) \\ Hugo Pfoertner, Apr 25 2023

A175494 a(n) = floor(n^(1/d(n))), where d(n) = number of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 5, 1, 2, 2, 2, 1, 6, 2, 2, 1, 6, 1, 6, 1, 1, 2, 6, 1, 3, 1, 2, 1, 7, 1, 2, 1, 2, 2, 7, 1, 7, 2, 1, 1, 2, 1, 8, 2, 2, 1, 8, 1, 8, 2, 2, 2, 2, 1, 8, 1, 2, 3, 9, 1, 3, 3, 3
Offset: 1

Views

Author

Leroy Quet, May 30 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(1/DivisorSigma[0, n])], {n, 100}] (* T. D. Noe, May 14 2013 *)

Extensions

More terms from R. J. Mathar, May 31 2010

A225737 Numbers n such that n < d(n)^(29/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^10 < d(n)^29. The last odd term is a(6362) = 225225.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(29/10), AppendTo[t, n]], {n, 10^7}]; t

A225731 Numbers n such that n < d(n)^(23/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^10 < d(n)^23. The last odd number is a(44) = 105.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(23/10), AppendTo[t, n]], {n, 10^5}]; t

A225732 Numbers n such that n < d(n)^(24/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^5 < d(n)^12. The last odd number is a(95) = 315.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(24/10), AppendTo[t, n]], {n, 10^6}]; t

A225733 Numbers n such that n < d(n)^(5/2), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^2 < d(n)^5. The last odd number is a(206) = 945.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(5/2), AppendTo[t, n]], {n, 10^6}]; t

A225734 Numbers n such that n < d(n)^(26/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^5 < d(n)^13. The last odd number is a(473) = 3465.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(26/10), AppendTo[t, n]], {n, 10^7}]; t
Showing 1-10 of 14 results. Next