cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A175745 Numbers with 35 divisors.

Original entry on oeis.org

5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the form p^34 and p^6*q^4 (A190464), where p and q are distinct primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[9000000],DivisorSigma[0,#]==35&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
  • PARI
    is(n)=numdiv(n)==35 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A175745(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,4)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,10)[0])-primepi(integer_nthroot(x,34)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 35.
Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) + P(34) = 0.000320676..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

Extensions

Extended by T. D. Noe, May 08 2011

A175746 Numbers with 36 divisors.

Original entry on oeis.org

1260, 1440, 1800, 1980, 2016, 2100, 2340, 2400, 2700, 2772, 2940, 3060, 3150, 3168, 3276, 3300, 3420, 3528, 3744, 3840, 3900, 4140, 4284, 4410, 4500, 4704, 4788, 4860, 4896, 4950, 5100, 5148, 5220, 5292, 5376, 5472, 5580, 5600, 5700, 5796, 5850, 6468, 6624
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^35, p^17*q^1, p^11*q^2, p^8*q^3, p^5*q^5, p^8*q^1*r^1, p^5*q^2*r^1, p^3*q^2*r^2 and p^2*q^2*r^1*s^1, where p, q, r, and s are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=36.

Extensions

Extended by T. D. Noe, May 08 2011

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015

A274808 Numbers n such that n and n+1 both have 34 divisors.

Original entry on oeis.org

2035980763136, 218010592018431, 413918027251712, 921717810593792, 957141387771903, 1017635547447296, 1119195504115712, 1842969898713087, 2057374251679743, 2435402979278847, 2913421405257728, 3039120499474431, 3129396016513023
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A175744.

Programs

  • PARI
    is(n)=numdiv(n)==34 && numdiv(n+1)==34
    
  • PARI
    has(n)=if(n%4==2, ispower(n/2, 16, &n) && isprime(n), bitand(n, 131071)==65536 && isprime(n>>16) && n>65536) \\ check if n is even with 34 divisors
    list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1, 33), t=p^33; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1))); forprime(p=3, sqrtnint(lim\3, 16), my(p16=p^16); forprime(q=3, lim\p16, if(p==q, next); t=p16*q; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1)))); Set(v)
Showing 1-4 of 4 results.