A175886 Numbers that are congruent to {1, 12} mod 13.
1, 12, 14, 25, 27, 38, 40, 51, 53, 64, 66, 77, 79, 90, 92, 103, 105, 116, 118, 129, 131, 142, 144, 155, 157, 168, 170, 181, 183, 194, 196, 207, 209, 220, 222, 233, 235, 246, 248, 259, 261, 272, 274, 285, 287, 298, 300, 311, 313, 324, 326, 337, 339, 350
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a175886 n = a175886_list !! (n-1) a175886_list = 1 : 12 : map (+ 13) a175886_list -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012
-
Magma
[(26*n+9*(-1)^n-13)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
-
Mathematica
Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* Bruno Berselli, Feb 29 2012 *) CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *) LinearRecurrence[{1,1,-1},{1,12,14},60] (* Harvey P. Dale, Oct 23 2015 *)
-
PARI
a(n)=(26*n+9*(-1)^n-13)/4 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: x*(1+11*x+x^2)/((1+x)*(1-x)^2).
a(n) = (26*n+9*(-1)^n-13)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = a(n-2)+13.
a(n) = 13*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n>1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/13)*cot(Pi/13). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((26*x - 13)*exp(x) + 9*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/13).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/13)*cosec(Pi/13). (End)
Comments