cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A047209 Numbers that are congruent to {1, 4} mod 5.

Original entry on oeis.org

1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 5). - Bruno Berselli, Nov 17 2010
The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi. - Jean-François Alcover, May 03 2013
These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m - 1 or m + 1 is divisible by 5. Closed under multiplication. - David A. Corneth, May 11 2018

Crossrefs

Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).
Cf. A045468 (primes), A032527 (partial sums).

Programs

Formula

G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = phi (A001622).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/5) * cosec(Pi/5) (A352324). (End)

Extensions

Edited by Michael Somos, Sep 22 2002

A047522 Numbers that are congruent to {1, 7} mod 8.

Original entry on oeis.org

1, 7, 9, 15, 17, 23, 25, 31, 33, 39, 41, 47, 49, 55, 57, 63, 65, 71, 73, 79, 81, 87, 89, 95, 97, 103, 105, 111, 113, 119, 121, 127, 129, 135, 137, 143, 145, 151, 153, 159, 161, 167, 169, 175, 177, 183, 185, 191, 193, 199, 201, 207, 209, 215, 217, 223, 225, 231, 233
Offset: 1

Views

Author

Keywords

Comments

Also n such that Kronecker(2,n) = mu(gcd(2,n)). - Jon Perry and T. D. Noe, Jun 13 2003
Also n such that x^2 == 2 (mod n) has a solution. The primes are given in sequence A001132. - T. D. Noe, Jun 13 2003
As indicated in the formula, a(n) is related to the even triangular numbers. - Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 17 2004
Cf. property described by Gary Detlefs in A113801: more generally, these a(n) are of the form (2*h*n + (h-4)*(-1)^n-h)/4 (h,n natural numbers). Therefore a(n)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 8). Also a(n)^2 - 1 == 0 (mod 16). - Bruno Berselli, Nov 17 2010
A089911(3*a(n)) = 2. - Reinhard Zumkeller, Jul 05 2013
S(a(n+1)/2, 0) = (1/2)*(S(a(n+1), sqrt(2)) - S(a(n+1) - 2, sqrt(2))) = T(a(n+1), sqrt(2)/2) = cos(a(n+1)*Pi/4) = sqrt(2)/2 = A010503, identically for n >= 0, where S is the Chebyshev polynomial (A049310) here extended to fractional n, evaluated at x = 0. (For T see A053120.) - Wolfdieter Lang, Jun 04 2023

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 16.

Crossrefs

Programs

  • Haskell
    a047522 n = a047522_list !! (n-1)
    a047522_list = 1 : 7 : map (+ 8) a047522_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    Select[Range[1, 191, 2], JacobiSymbol[2, # ]==1&]
  • PARI
    a(n)=4*n-2+(-1)^n \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = sqrt(8*A014494(n)+1) = sqrt(16*ceiling(n/2)*(2*n+1)+1) = sqrt(8*A056575(n)-8*(2n+1)*(-1)^n+1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 17 2004
1 - 1/7 + 1/9 - 1/15 + 1/17 - ... = (Pi/8)*(1 + sqrt(2)). [Jolley] - Gary W. Adamson, Dec 16 2006
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = 4n - 2 + (-1)^n = a(n-2) + 8.
G.f.: x(1+6x+x^2)/((1+x)(1-x)^2). (End)
a(n) = 8*n - a(n-1) - 8. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 8*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
E.g.f.: 1 + (4*x - 1)*cosh(x) + (4*x - 3)*sinh(x). - Stefano Spezia, May 13 2021
E.g.f.: 1 + (4*x - 3)*exp(x) + 2*cosh(x). - David Lovler, Jul 16 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2+sqrt(2)) (A179260).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/8)*cosec(Pi/8) (A352125). (End)

A056020 Numbers that are congruent to +-1 mod 9.

Original entry on oeis.org

1, 8, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100, 107, 109, 116, 118, 125, 127, 134, 136, 143, 145, 152, 154, 161, 163, 170, 172, 179, 181, 188, 190, 197, 199, 206, 208, 215, 217, 224, 226, 233, 235, 242, 244, 251, 253
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Or, numbers k such that k^2 == 1 (mod 9).
Or, numbers k such that the iterative cycle j -> sum of digits of j^2 when started at k contains a 1. E.g., 8 -> 6+4 = 10 -> 1+0+0 = 1 and 17 -> 2+8+9 = 19 -> 3+6+1 = 10 -> 1+0+0 = 1. - Asher Auel, May 17 2001

Crossrefs

Cf. A007953, A047522 (n=1 or 7 mod 8), A090771 (n=1 or 9 mod 10).
Cf. A129805 (primes), A195042 (partial sums).
Cf. A381319 (general case mod n^2).

Programs

  • Haskell
    a056020 n = a056020_list !! (n-1)
    a05602_list = 1 : 8 : map (+ 9) a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Mathematica
    Select[ Range[ 300 ], PowerMod[ #, 2, 3^2 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 8, 10}, 67] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n)=9*(n>>1)+if(n%2,1,-1) \\ Charles R Greathouse IV, Jun 29 2011
    
  • PARI
    for(n=1,40,print1(9*n-8,", ",9*n-1,", ")) \\ Charles R Greathouse IV, Jun 29 2011
    

Formula

a(1) = 1; a(n) = 9(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 [Offset corrected by Jon E. Schoenfield, Dec 22 2008]
From R. J. Mathar, Feb 10 2008: (Start)
O.g.f.: 1 + 5/(4(x+1)) + 27/(4(-1+x)) + 9/(2(-1+x)^2).
a(n+1) - a(n) = A010697(n). (End)
a(n) = (9*A132355(n) + 1)^(1/2). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = a(n-2) + 9, for n > 2.
a(n) = 9*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), n > 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/9)*cot(Pi/9) = A019676 * A019968. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((18*x - 9)*exp(x) + 5*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/9) (A332437).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/9)*cosec(Pi/9). (End)
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) ~ (3^2/2)*n. (End)

A090771 Numbers that are congruent to {1, 9} mod 10.

Original entry on oeis.org

1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 81, 89, 91, 99, 101, 109, 111, 119, 121, 129, 131, 139, 141, 149, 151, 159, 161, 169, 171, 179, 181, 189, 191, 199, 201, 209, 211, 219, 221, 229, 231, 239, 241, 249, 251, 259, 261, 269, 271, 279, 281
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 10). - Bruno Berselli, Nov 17 2010

Crossrefs

Cf. A056020 (n = 1 or 8 mod 9), A175885 (n = 1 or 10 mod 11).
Cf. A045468 (primes), A195142 (partial sums).

Programs

Formula

a(n) = sqrt(40*A057569(n) + 1). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Sep 16 2010 - Nov 17 2010: (Start)
G.f.: x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = (10*n + 3*(-1)^n - 5)/2.
a(n) = -a(-n + 1) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 10.
a(n) = 10*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 10*n - a(n-1) - 10 (with a(1) = 1). - Vincenzo Librandi, Nov 16 2010
a(n) = sqrt(10*A132356(n-1) + 1). - Ivan N. Ianakiev, Nov 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/10)*cot(Pi/10) = A000796 * A019970 / 10 = sqrt(5 + 2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((10*x - 5)*exp(x) + 3*exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(phi+2) (A188593).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi*phi/5 = A094888/10. (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A047336 Numbers that are congruent to {1, 6} mod 7.

Original entry on oeis.org

1, 6, 8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43, 48, 50, 55, 57, 62, 64, 69, 71, 76, 78, 83, 85, 90, 92, 97, 99, 104, 106, 111, 113, 118, 120, 125, 127, 132, 134, 139, 141, 146, 148, 153, 155, 160, 162, 167, 169, 174, 176, 181, 183, 188, 190, 195, 197, 202, 204, 209
Offset: 1

Views

Author

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 7). - Bruno Berselli, Nov 17 2010

Crossrefs

Programs

  • Haskell
    a047336 n = a047336_list !! (n-1)
    a047336_list = 1 : 6 : map (+ 7) a047336_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..210]| n mod 7 in {1,6}]; // Bruno Berselli, Feb 22 2011
    
  • Mathematica
    Rest[Flatten[Table[{7i-1,7i+1},{i,0,40}]]] (* Harvey P. Dale, Nov 20 2010 *)
  • PARI
    a(n)=n\2*7-(-1)^n \\ Charles R Greathouse IV, May 02 2016

Formula

a(1) = 1; a(n) = 7(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 (corrected by Jon E. Schoenfield, Dec 22 2008)
a(n) = (7/2)*(n-(1-(-1)^n)/2) - (-1)^n. - Rolf Pleisch, Nov 02 2010
From Bruno Berselli, Nov 17 2010: (Start)
G.f.: x*(1+5*x+x^2)/((1+x)*(1-x)^2).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = a(n-2)+7.
a(n) = 7*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 7*floor(n/2)+(-1)^(n+1). - Gary Detlefs, Dec 29 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/7)*cot(Pi/7) = A019674 * A178818. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 3*exp(-x))/4. - David Lovler, Sep 01 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/7) (A160389).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/7) * cosec(Pi/7) (A371858). (End)

Extensions

More terms from Jon E. Schoenfield, Jan 18 2009

A113801 Numbers that are congruent to {1, 13} mod 14.

Original entry on oeis.org

1, 13, 15, 27, 29, 41, 43, 55, 57, 69, 71, 83, 85, 97, 99, 111, 113, 125, 127, 139, 141, 153, 155, 167, 169, 181, 183, 195, 197, 209, 211, 223, 225, 237, 239, 251, 253, 265, 267, 279, 281, 293, 295, 307, 309, 321, 323, 335, 337, 349, 351, 363, 365, 377, 379
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

If 14k+1 is a perfect square..(0,12,16,52,60,120..) then the square root of 14k+1 = a(n) - Gary Detlefs, Feb 22 2010
More generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in our case, a(n)^2-1==0 (mod 14). Also a(n)^2-1==0 (mod 28). - Bruno Berselli, Oct 26 2010 - Nov 17 2010

Crossrefs

Programs

  • Haskell
    a113801 n = a113801_list !! (n-1)
    a113801_list = 1 : 13 : map (+ 14) a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=n\2*14-(-1)^n \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = 14*(n-1)-a(n-1), n>1. - R. J. Mathar, Jan 30 2010
From Bruno Berselli, Oct 26 2010: (Start)
a(n) = -a(-n+1) = (14*n+5*(-1)^n-7)/2.
G.f.: x*(1+12*x+x^2)/((1+x)*(1-x)^2).
a(n) = a(n-2)+14 for n>2.
a(n) = 14*A000217(n-1)+1 - 2*sum[i=1..n-1] a(i) for n>1. (End)
a(0)=1, a(1)=13, a(2)=15, a(n)=a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, May 11 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/14)*cot(Pi/14). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 5*exp(-x))/2. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/14).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/14)*cosec(Pi/14). (End)

Extensions

Corrected and extended by Giovanni Teofilatto, Nov 14 2008
Replaced the various formulas by a correct one - R. J. Mathar, Jan 30 2010

A091998 Numbers that are congruent to {1, 11} mod 12.

Original entry on oeis.org

1, 11, 13, 23, 25, 35, 37, 47, 49, 59, 61, 71, 73, 83, 85, 95, 97, 107, 109, 119, 121, 131, 133, 143, 145, 155, 157, 167, 169, 179, 181, 191, 193, 203, 205, 215, 217, 227, 229, 239, 241, 251, 253, 263, 265, 275, 277, 287, 289, 299, 301, 311, 313, 323, 325, 335
Offset: 1

Views

Author

Ray Chandler, Feb 21 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n-h)/4 (h and n in A000027), then ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 12). Also a(n)^2 - 1 == 0 (mod 24).

Crossrefs

First row of A092260.
Cf. A175885 (n == 1 or 10 (mod 11)), A175886 (n == 1 or 12 (mod 13)).
Cf. A097933 (primes), A195143 (partial sums).

Programs

  • Haskell
    a091998 n = a091998_list !! (n-1)
    a091998_list = 1 : 11 : map (+ 12) a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ n: n in [1..350] | n mod 12 eq 1 or n mod 12 eq 11 ];
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,11,13},100] (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    is(n)=n=n%12;n==11 || n==1 \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = 12*n - a(n-1) - 12 (with a(1)=1). - Vincenzo Librandi, Nov 16 2010
a(n) = 6*n + 2*(-1)^n - 3.
G.f.: x*(1+10*x+x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 12 for n > 2.
a(n) = 12*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 + sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + (6*x - 3)*exp(x) + 2*exp(-x). - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2 + sqrt(3)) = 2*cos(Pi/12) (A188887).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/3)*cos(Pi/12). (End)

Extensions

Formulae and comment added by Bruno Berselli, Nov 17 2010 - Nov 18 2010

A175885 Numbers that are congruent to {1, 10} mod 11.

Original entry on oeis.org

1, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 100, 109, 111, 120, 122, 131, 133, 142, 144, 153, 155, 164, 166, 175, 177, 186, 188, 197, 199, 208, 210, 219, 221, 230, 232, 241, 243, 252, 254, 263, 265, 274, 276, 285, 287, 296, 298
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 11).

Crossrefs

Cf. A090771 (n==1 or 9 mod 10), A091998 (n==1 or 11 mod 12).
Cf. A195043 (partial sums).

Programs

Formula

G.f.: x*(1+9*x+x^2)/((1+x)*(1-x)^2).
a(n) = (22*n + 7*(-1)^n - 11)/4.
a(n) = -a(-n+1) = a(n-2) + 11 = a(n-1) + a(n-2) - a(n-3).
a(n) = 11*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n) = A195312(n) + A195312(n-1) = A195313(n) - A195313(n-2). - Bruno Berselli, Sep 18 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/11)*cot(Pi/11). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((22*x - 11)*exp(x) + 7*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/11).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/11)*cosec(Pi/11). (End)

A175887 Numbers that are congruent to {1, 14} mod 15.

Original entry on oeis.org

1, 14, 16, 29, 31, 44, 46, 59, 61, 74, 76, 89, 91, 104, 106, 119, 121, 134, 136, 149, 151, 164, 166, 179, 181, 194, 196, 209, 211, 224, 226, 239, 241, 254, 256, 269, 271, 284, 286, 299, 301, 314, 316, 329, 331, 344, 346, 359, 361, 374, 376, 389, 391, 404
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in this case, a(n)^2-1==0 (mod 15).

Crossrefs

Programs

  • Haskell
    a175887 n = a175887_list !! (n-1)
    a175887_list = 1 : 14 : map (+ 15) a175887_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..450] | n mod 15 in [1,14]];
    
  • Magma
    [(30*n+11*(-1)^n-15)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
    
  • Mathematica
    Select[Range[1, 450], MemberQ[{1,14}, Mod[#, 15]]&]
    CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    a(n)=(30*n+11*(-1)^n-15)/4 \\ Charles R Greathouse IV, Sep 28 2015

Formula

G.f.: x*(1+13*x+x^2)/((1+x)*(1-x)^2).
a(n) = (30*n+11*(-1)^n-15)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = 15*A000217(n-1) -2*sum(a(i), i=1..n-1) +1 for n>1.
a(n) = A047209(A047225(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/15)*cot(Pi/15) = A019693 * A019976 / 10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((30*x - 15)*exp(x) + 11*exp(-x))/4. - David Lovler, Sep 05 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/15)*cosec(Pi/15).
Product_{n>=2} (1 + (-1)^n/a(n)) = 2*cos(Pi/15). (End)

A195045 Concentric 13-gonal numbers.

Original entry on oeis.org

0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

Formula

a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023
Showing 1-10 of 12 results. Next