cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A075749 Numbers k such that 210*k +- 1 are twin primes.

Original entry on oeis.org

2, 5, 11, 13, 16, 28, 29, 30, 35, 36, 42, 44, 50, 51, 55, 57, 73, 86, 104, 121, 125, 128, 135, 140, 147, 148, 157, 158, 160, 161, 165, 168, 179, 193, 204, 205, 209, 223, 244, 247, 249, 251, 255, 264, 271, 273, 277, 281, 282, 290, 302, 304, 310, 312, 313, 316
Offset: 1

Views

Author

Zak Seidov, Oct 08 2002

Keywords

Examples

			k = 2 is a term since 210*2 - 1 = 419 and 210*2 + 1 = 421 are twin primes.
		

Crossrefs

Cf. A002822 (with 6*k +- 1), A176114 (with 30*k +- 1).

Programs

A216847 Integers n such that 6n -/+ 1 and 30n -/+ 1 are all primes.

Original entry on oeis.org

1, 2, 5, 77, 100, 110, 135, 170, 215, 338, 357, 385, 390, 467, 555, 593, 597, 688, 737, 758, 980, 1127, 1682, 1743, 1785, 2305, 2555, 3152, 3372, 3640, 3927, 3985, 4375, 4480, 4597, 4615, 4653, 4685, 5082, 5252, 5357, 5558, 6018, 6078, 6088, 6155, 7012, 7380
Offset: 1

Views

Author

Zak Seidov, Dec 10 2012

Keywords

Comments

Consider two primes P=2p+3q, Q=2q+3p with p and q twin primes, and p=6n-1, then P=Q+2, and sequence gives corresponding values of n.

Crossrefs

Intersection of A002822 and A176114.

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] && PrimeQ[30 # - 1] && PrimeQ[30 # + 1] &] (* T. D. Noe, Dec 10 2012 *)
    Select[Range[8000],AllTrue[Flatten[{6#+{1,-1},30#+{1,-1}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    {for(n=1,6000,if(isprime(p=6*n-1)&&isprime(p+2)&&isprime(q=30*n-1)&&isprime(q+2),print1(n",")))}

A331840 Numbers k such that 30*k-13, 30*k-11 are twin primes.

Original entry on oeis.org

1, 4, 5, 7, 8, 12, 21, 28, 29, 43, 48, 50, 54, 56, 57, 60, 63, 67, 68, 70, 75, 76, 89, 90, 106, 109, 116, 118, 119, 126, 131, 138, 139, 141, 145, 151, 152, 155, 160, 166, 181, 183, 189, 196, 207, 228, 232, 238, 244, 249, 250, 252, 259, 263, 270, 280, 285, 287
Offset: 1

Views

Author

Frank Ellermann, Feb 26 2020

Keywords

Comments

All twin primes > 7 have the form 30*k-{13,11}, or 30*k +-1 (A176114), or 30*k+{11,13} (A089160).
All twin primes > 7 with least significant decimal digit 7 have the form 30*k-13.
All twin primes > 7 with least significant decimal digit 3 have the form 30*k+13.

Examples

			1 is a term because 1*30 - 13 =  17 = prime(6)  and 1*30 - 11 =  19 = prime(7).
4 is a term because 4*30 - 13 = 107 = prime(28) and 4*30 - 11 = 109 = prime(29).
5 is a term because 5*30 - 13 = 137 = prime(33) and 5*30 - 11 = 139 = prime(34).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], And @@ PrimeQ[30*# - {11, 13}] &] (* Amiram Eldar, Feb 29 2020 *)
  • PARI
    isok(k) = isprime(30*k-13) && isprime(30*k-11); \\ Michel Marcus, Feb 29 2020
  • Rexx
    S = 1
    do N = 2 while length( S ) < 255
       if NOPRIME( N*30 -13 )  then  iterate N
       if NOPRIME( N*30 -11 )  then  iterate N
       S = S || ',' N
    end N
    say S
    

Formula

a(n) = A089161(n)+1.

A332772 Numbers k > 0 such that 30k +- 7 is prime.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 12, 13, 15, 19, 20, 25, 26, 29, 32, 33, 37, 41, 43, 48, 52, 53, 54, 58, 66, 67, 76, 78, 81, 85, 88, 89, 90, 92, 95, 97, 101, 107, 118, 120, 121, 128, 129, 134, 143, 150, 153, 155, 165, 166, 172, 178, 180, 194, 195, 202, 207, 209, 211, 212
Offset: 1

Views

Author

Frank Ellermann, Feb 25 2020

Keywords

Comments

Looking for prime factors > 5=prime(3) in 8=A005867(3) candidates mod 30=A002110(3) two candidates in the form 30k +- 7 with k > 0 never belong to a twin prime pair. Twin primes can be (30k-13, 30k-11) A331840, (30k-1, 30k +1) A176114, or (30k+11, 30k+13) A089160.

Examples

			a(4)=4 for prime(30)=113=4*30-7 and prime(31)=127=4*30+7.
a(5)=9 for prime(56)=263=9*30-7 and prime(59)=277=9*30+7.
		

Crossrefs

Subsequence of A158573. Prime pairs 30k +- 7 in A329262.

Programs

  • Mathematica
    Select[Range@ 215, AllTrue[30 # + {-7, 7}, PrimeQ] &] (* Michael De Vlieger, Feb 25 2020 *)
  • Rexx
    S = 1
    do N = 2 while length( S ) < 255
       if NOPRIME( N * 30 + 7 )   then  iterate N
       if NOPRIME( N * 30 - 7 )   then  iterate N
       S = S || ',' N
    end N
    say S

A359184 Numbers k such that 30*k - 1, 30*k + 1, 30*k^2 - 1 and 30*k^2 + 1 are all prime.

Original entry on oeis.org

1, 14, 118, 232, 538, 720, 1155, 1253, 2821, 3151, 6161, 6238, 6916, 7428, 7827, 9009, 9521, 9933, 10284, 10779, 11661, 12348, 13663, 13811, 14092, 14938, 15273, 16323, 16457, 17116, 17940, 20735, 21931, 22022, 24010, 24311, 24375, 26557, 28293, 29645, 30555, 33880, 34033, 34328, 35797, 36413
Offset: 1

Views

Author

Robert Israel, Dec 18 2022

Keywords

Comments

Numbers k such that 30*k and 30*k^2 are in A014574.
The first number k > 1 such that 30*k - 1, 30*k + 1, 30*k^2 - 1, 30*k^2 + 1, 30*k^3 - 1 and 30*k^3 + 1 are all prime is 266225.

Examples

			a(2) = 14 is a term because 30*14 - 1 = 419, 30*14 + 1 = 421, 30*14^2 - 1 = 5879, and 30*14^2 + 1 = 5881 are all prime.
		

Crossrefs

Cf. A014574.
Intersection of A176114 and A283867.

Programs

  • Maple
    select(k -> isprime(30*k-1) and isprime(30*k+1) and isprime(30*k^2-1) and isprime(30*k^2+1), [$1..10^5]);
  • Mathematica
    Select[Range[40000], AllTrue[{30*# - 1, 30*# + 1, 30*#^2 - 1, 30*#^2 + 1}, PrimeQ] &] (* Amiram Eldar, Dec 19 2022 *)

A176115 Numbers n such that 2310*n-1, 2310*n+1 are twin primes, (2310=2*3*5*7*11).

Original entry on oeis.org

1, 4, 5, 11, 15, 19, 24, 34, 40, 48, 51, 58, 66, 73, 78, 97, 98, 100, 106, 109, 116, 117, 123, 129, 130, 134, 136, 137, 143, 163, 169, 175, 176, 180, 182, 186, 194, 201, 207, 222, 226, 228, 234, 239, 248, 271, 274, 275, 279, 285, 286, 295, 305, 313, 320, 347
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6! ],PrimeQ[2310*#-1]&&PrimeQ[2310*#+1]&]
Showing 1-6 of 6 results.