A176222 a(n) = (n^2 - 3*n + 1 + (-1)^n)/2.
0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, 78, 90, 105, 119, 136, 152, 171, 189, 210, 230, 253, 275, 300, 324, 351, 377, 406, 434, 465, 495, 528, 560, 595, 629, 666, 702, 741, 779, 820, 860, 903, 945, 990, 1034, 1081, 1127, 1176, 1224, 1275, 1325, 1378, 1430
Offset: 3
Examples
For n=5 the reference matrix is: 11001 11100 01110 00111 10011 There are 2^(3*n) = 32768 0-1 matrices obtained from removing one or more 1's in it. There are 305 such matrices with permanent 4 and there are 13 such matrices with exactly two 1's in every column and every row. There are 5 matrices having both properties. One of them is: 10001 01100 01100 00011 10010 From _Aaron Khan_, Jul 05 2022: (Start) Examples of the sequence when used for kings on a chessboard: . A solution illustrating a(2)=3: +-------+ | B B B | | . . . | | W W W | +-------+ . A solution illustrating a(3)=5: +---------+ | B B B B | | B . . . | | . . . W | | W W W W | +---------+ (End)
References
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3 (1992), 15-19.
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(n^2-3*n+1+(-1)^n)/2: n in [3..100]]; // Vincenzo Librandi, Mar 24 2011
-
Maple
A176222:=n->(n^2-3*n+1+(-1)^n)/2: seq(A176222(n), n=3..100); # Wesley Ivan Hurt, May 25 2015
-
Mathematica
Table[(n^2 - 3*n + 1 + (-1)^n)/2, {n, 3, 100}] (* or *) CoefficientList[Series[x (x - 3)/((1 + x)*(x - 1)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, May 25 2015 *) LinearRecurrence[{2,0,-2,1},{0,3,5,10},90] (* Harvey P. Dale, Jan 14 2024 *)
-
PARI
a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015
-
Sage
[n*(n-3)/2 + ((n+1)%2) for n in (3..60)] # G. C. Greubel, Mar 22 2022
Formula
a(n) = (n - t(n))*(n - 3 + t(n))/2, where t(n) = 1-(n mod 2).
G.f.: x^4*(3-x)/( (1+x)*(1-x)^3 ). - R. J. Mathar, Mar 06 2011
From Bruno Berselli, Sep 13 2011: (Start)
a(n) + a(n+1) = A005563(n-2).
a(-n) = A084265(n). (End)
a(n) = 1 -2*n +floor(n/2) +floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Wesley Ivan Hurt, May 25 2015: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = Sum_{i=(-1)^n..n-2} i. (End)
With offset 0, this is ceiling(n/2)*(2*floor(n/2)+3). - N. J. A. Sloane, Jan 16 2020
E.g.f.: (1/2)*((1-x)*exp(x/2) - exp(-x/2))^2. - G. C. Greubel, Mar 22 2022
Extensions
Matrix class definition checked, edited and illustrated by Olivier Gérard, Mar 26 2011
Comments