A176335
Central coefficients T(2n,n) of number triangle A176331.
Original entry on oeis.org
1, 3, 28, 315, 3876, 50358, 678112, 9365499, 131809060, 1882294128, 27193657008, 396600597198, 5829739893264, 86262567856650, 1283677784658528, 19196304797150715, 288295493121264420, 4346056823245242420
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- F. Baldassarri, S. Bosch, B. Dwork, (eds), p-adic Analysis. Lecture Notes in Mathematics, vol. 1454, pp. 194 - 204, Springer, Berlin, Heidelberg.
- Matthijs J. Coster, Supercongruences.
-
T:= function(n,k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
end;
List([0..30], n-> T(2*n,n) ); # G. C. Greubel, Dec 07 2019
-
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
[T(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 07 2019
-
A176335 := proc(n)
add((-1)^k*binomial(k,n)^2,k=0..2*n);
end proc: # R. J. Mathar, Feb 10 2015
-
T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[2*n, n], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
-
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
vector(31, n, T(2*(n-1), n-1) ) \\ G. C. Greubel, Dec 07 2019
-
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[T(2*n, n) for n in (0..30)] # G. C. Greubel, Dec 07 2019
A176331
Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 28, 13, 1, 1, 21, 79, 79, 21, 1, 1, 31, 181, 315, 181, 31, 1, 1, 43, 361, 971, 971, 361, 43, 1, 1, 57, 652, 2511, 3876, 2511, 652, 57, 1, 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1, 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 13, 28, 13, 1;
1, 21, 79, 79, 21, 1;
1, 31, 181, 315, 181, 31, 1;
1, 43, 361, 971, 971, 361, 43, 1;
1, 57, 652, 2511, 3876, 2511, 652, 57, 1;
1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1;
1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1;
Central coefficients T(2*n, n) are
A176335.
-
T:= function(n,k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
-
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
-
T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 07 2019
T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # Peter Luschny, May 13 2024
-
T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2019 *)
-
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ G. C. Greubel, Dec 07 2019
-
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
A176333
Expansion of (1-3*x)/(1-4*x+9*x^2).
Original entry on oeis.org
1, 1, -5, -29, -71, -23, 547, 2395, 4657, -2927, -53621, -188141, -269975, 613369, 4883251, 14012683, 12101473, -77708255, -419746277, -979610813, -140726759, 8253590281, 34280901955, 62841295291, -57162936431, -794223403343, -2662427185493, -3501698111885
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2097
- Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-9).
-
a:=[1,1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019
-
I:=[1,1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019
-
seq(coeff(series((1-3*x)/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019
-
CoefficientList[Series[(1-3x)/(1-4x+9x^2),{x,0,30}],x] (* or *) LinearRecurrence[{4,-9},{1,1},30] (* Harvey P. Dale, Sep 17 2012 *)
-
my(x='x+O('x^30)); Vec((1-3*x)/(1-4*x+9*x^2)) \\ G. C. Greubel, Dec 07 2019
-
def A176333_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-3*x)/(1-4*x+9*x^2) ).list()
A176333_list(30) # G. C. Greubel, Dec 07 2019
A176334
Diagonal sums of number triangle A176331.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
Offset: 0
-
T:= function(n,k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
end;
List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j,j) )); # G. C. Greubel, Dec 07 2019
-
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
[(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
-
A176334 := proc(n)
add(add(binomial(j,n-2*k)*binomial(j,k)*(-1)^(n-k-j),j=0..n-k), k=0..floor(n/2)) ;
end proc: # R. J. Mathar, Feb 10 2015
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
-
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
vector(30, n, sum(j=0, (n-1)\2, T(n-j-1,j)) ) \\ G. C. Greubel, Dec 07 2019
-
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
A181933
a(n) = Sum_{k=0..n} binomial(n+k,k)*sin(Pi*(n+k)/2).
Original entry on oeis.org
0, 1, -3, 9, -30, 106, -385, 1421, -5304, 19966, -75658, 288222, -1102790, 4234868, -16312773, 63003869, -243896960, 946066678, -3676303578, 14308370014, -55768166380, 217640082188, -850345208538, 3325907590274, -13020993588680
Offset: 0
-
f[n_] := Sum[ Binomial[n + k, k] Sin[Pi (n + k)/2], {k, 0, n}]; Array[f, 25, 0]
-
makelist(coeff(taylor(1/2*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1),x,0,20),x,n),n,0,20); /* Vladimir Kruchinin, Mar 28 2016 */
-
x='x+O('x^50); concat([0], Vec((1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1))) \\ G. C. Greubel, Mar 24 2017
A360211
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k).
Original entry on oeis.org
1, 2, 5, 17, 61, 221, 812, 3021, 11344, 42899, 163146, 623320, 2390653, 9198879, 35494701, 137290466, 532149805, 2066501909, 8038146035, 31312535610, 122140123201, 477002869614, 1864912495716, 7298427590543, 28588888586743, 112080607196843, 439744801379594
Offset: 0
-
A360211 := proc(n)
add((-1)^k*binomial(2*n-3*k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360211(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-3*k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^2/(1+sqrt(1-4*x)))))
Showing 1-6 of 6 results.
Comments