cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A176335 Central coefficients T(2n,n) of number triangle A176331.

Original entry on oeis.org

1, 3, 28, 315, 3876, 50358, 678112, 9365499, 131809060, 1882294128, 27193657008, 396600597198, 5829739893264, 86262567856650, 1283677784658528, 19196304797150715, 288295493121264420, 4346056823245242420
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    List([0..30], n-> T(2*n,n) ); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    A176335 := proc(n)
        add((-1)^k*binomial(k,n)^2,k=0..2*n);
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[2*n, n], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
    vector(31, n, T(2*(n-1), n-1) ) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Sum_{k=0..2n} C(k,n)^2*(-1)^k.
Conjecture: 224*n^2*(n-1)*a(n) - 48*(n-1)*(65*n^2 - 36*n - 13)*a(n-1) + 4*(-1839*n^3 + 11081*n^2 - 21932*n + 14280)*a(n-2) + 12*(-81*n^3 + 326*n^2 - 591*n + 562)*a(n-3) - (n-3)*(1853*n^2 - 7403*n + 7140)*a(n-4) - 12*(n-4)*(2*n-7)^2*a(n-5) = 0. - R. J. Mathar, Feb 10 2015
From Peter Bala, Aug 08 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+k, k)^2. Cf. A112029.
Conjecture (assuming an offset of 1): the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and all positive integers n and r [added Nov 29 2024: proved by Coster. See Theorem 4]. (End)
a(n) ~ 2^(4*n+2) / (5*Pi*n). - Vaclav Kotesovec, Aug 08 2024
a(n) = binomial(2*n, n)^2 * hypergeom([1, -n, -n], [-2*n, -2*n], -1). - Peter Luschny, Nov 29 2024

A176331 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 28, 13, 1, 1, 21, 79, 79, 21, 1, 1, 31, 181, 315, 181, 31, 1, 1, 43, 361, 971, 971, 361, 43, 1, 1, 57, 652, 2511, 3876, 2511, 652, 57, 1, 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1, 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,    1;
  1,  7,    7,     1;
  1, 13,   28,    13,     1;
  1, 21,   79,    79,    21,     1;
  1, 31,  181,   315,   181,    31,     1;
  1, 43,  361,   971,   971,   361,    43,     1;
  1, 57,  652,  2511,  3876,  2511,   652,    57,    1;
  1, 73, 1093,  5713, 12606, 12606,  5713,  1093,   73,  1;
  1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1;
		

Crossrefs

Row sums are A176332.
Diagonal sums are A176334.
Central coefficients T(2*n, n) are A176335.

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 07 2019
    T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # Peter Luschny, May 13 2024
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
    

Formula

T(n, k) = T(n, n-k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1). - Peter Luschny, May 13 2024

A176333 Expansion of (1-3*x)/(1-4*x+9*x^2).

Original entry on oeis.org

1, 1, -5, -29, -71, -23, 547, 2395, 4657, -2927, -53621, -188141, -269975, 613369, 4883251, 14012683, 12101473, -77708255, -419746277, -979610813, -140726759, 8253590281, 34280901955, 62841295291, -57162936431, -794223403343, -2662427185493, -3501698111885
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Comments

Hankel transform of A176332.

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    seq(coeff(series((1-3*x)/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-4x+9x^2),{x,0,30}],x] (* or *) LinearRecurrence[{4,-9},{1,1},30] (* Harvey P. Dale, Sep 17 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-4*x+9*x^2)) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    def A176333_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-3*x)/(1-4*x+9*x^2) ).list()
    A176333_list(30) # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = 3^n*( cos(2*n*atan(1/sqrt(5))) - sin(2*n*atan(1/sqrt(5)))/sqrt(5) ).
a(0)=1, a(1)=1, a(n) = 4*a(n-1) - 9*a(n-2). - Harvey P. Dale, Sep 17 2012
a(n) = -3*A190967(n) + A190967(n+1). - R. J. Mathar, May 04 2013

A176334 Diagonal sums of number triangle A176331.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j,j) )); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    A176334 := proc(n)
        add(add(binomial(j,n-2*k)*binomial(j,k)*(-1)^(n-k-j),j=0..n-k), k=0..floor(n/2)) ;
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
    vector(30, n, sum(j=0, (n-1)\2, T(n-j-1,j)) ) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j,n-2k)*C(j,k)*(-1)^(n-k-j).
a(n) ~ phi^(2*n+3) / (4*5^(1/4)*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 08 2024

A181933 a(n) = Sum_{k=0..n} binomial(n+k,k)*sin(Pi*(n+k)/2).

Original entry on oeis.org

0, 1, -3, 9, -30, 106, -385, 1421, -5304, 19966, -75658, 288222, -1102790, 4234868, -16312773, 63003869, -243896960, 946066678, -3676303578, 14308370014, -55768166380, 217640082188, -850345208538, 3325907590274, -13020993588680
Offset: 0

Views

Author

Robert G. Wilson v, Apr 02 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ Binomial[n + k, k] Sin[Pi (n + k)/2], {k, 0, n}]; Array[f, 25, 0]
  • Maxima
    makelist(coeff(taylor(1/2*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1),x,0,20),x,n),n,0,20); /* Vladimir Kruchinin, Mar 28 2016 */
    
  • PARI
    x='x+O('x^50); concat([0], Vec((1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1))) \\ G. C. Greubel, Mar 24 2017

Formula

G.f.: (1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1). - Vladimir Kruchinin, Mar 28 2016
a(n) ~ (-1)^(n+1) *2^(2*n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 28 2016
Conjecture: +2*n*a(n) +8*n*a(n-1) +(-n+20)*a(n-2) +5*(-n+4)*a(n-3) +2*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Jun 14 2016

A360211 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k).

Original entry on oeis.org

1, 2, 5, 17, 61, 221, 812, 3021, 11344, 42899, 163146, 623320, 2390653, 9198879, 35494701, 137290466, 532149805, 2066501909, 8038146035, 31312535610, 122140123201, 477002869614, 1864912495716, 7298427590543, 28588888586743, 112080607196843, 439744801379594
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A360211 := proc(n)
        add((-1)^k*binomial(2*n-3*k,n-2*k),k=0..floor(n/2)) ;
    end proc:
    seq(A360211(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-3*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^2/(1+sqrt(1-4*x)))))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^2 * c(x)) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+3) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 18 2023
D-finite with recurrence 2*n*a(n) +(-5*n+2)*a(n-1) +(-11*n+12)*a(n-2) +2*(-n+5)*a(n-3) +(-7*n+2)*a(n-4) +2*(-2*n+5)*a(n-5)=0. - R. J. Mathar, Mar 02 2023
Showing 1-6 of 6 results.