A116476
Numbers n such that T(n) + T(n+1) + ... + T(n+10) is a square, where T(m) = A000217(m) is the m-th triangular number.
Original entry on oeis.org
13, 46, 229, 1608, 7335, 20304, 92391, 635710, 2892133, 8001886, 36403981, 250470288, 1139495223, 3152724936, 14343078279, 98684659918, 448958227885, 1242165625054, 5651136440101, 38881505539560, 176888402293623, 489410103548496
Offset: 1
Edward Fedorovich (chipramy(AT)012.net.il), Mar 29 2006
13 belongs to this sequence since T(13) + T(14) + ... + T(23) = 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = 1936 = 44^2.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,394,-394,0,0,-1,1).
-
For[n = 1, n < 100000, n++, If[IntegerQ[Sqrt[Sum[i*(i+1)/2, {i, n, n + 10}]]], Print[n]]] (* Stefan Steinerberger, Mar 30 2006 *)
LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{13,46,229,1608,7335,20304,92391,635710,2892133},30] (* Harvey P. Dale, Sep 01 2017 *)
A176542
Numbers n such that there are only a finite nonzero number of sets of n consecutive triangular numbers that sum to a square.
Original entry on oeis.org
32, 50, 98, 128, 200, 242, 338, 392, 512, 578, 722, 800, 968, 1058, 1250, 1352, 1568, 1682, 1922, 2048, 2312, 2450, 2738, 2888, 3200, 3362, 3698, 3872, 4232, 4418, 4802, 5000, 5408, 5618, 6050, 6272, 6728, 6962, 7442, 7688, 8192, 8450, 8978, 9248, 9800
Offset: 1
32 is in this sequence because there is only one set of 32 consecutive triangular numbers that sum to a square (namely, A000217(26) thru A000217(57), which sum to 29584 = 172^2).
3 is NOT in this sequence, because there are infinitely many sets of 3 consecutive triangular numbers that sum to a square (cf. A165517).
4 is NOT in this sequence, because there are infinitely many sets of 4 consecutive triangular numbers that sum to a square (cf. A202391).
5 is NOT in this sequence, because there are NO sets of 5 consecutive triangular numbers that sum to a square.
11 is NOT in this sequence, since there are infinitely many sets of 11 consecutive triangular numbers that sum to a square (cf. A116476).
A257293
Numbers n such that T(n) + T(n+1) + ... + T(n+12) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
3, 29, 75, 432, 998, 3624, 8310, 44717, 102443, 370269, 848195, 4561352, 10448838, 37764464, 86508230, 465213837, 1065679683, 3851605709, 8822991915, 47447250672, 108688879478, 392826018504, 899858667750, 4839154355357, 11085200027723, 40064402282349
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,102,-102,0,0,-1,1).
-
I:=[3,29,75,432,998,3624,8310,44717,102443]; [n le 9 select I[n] else Self(n-1)+102*Self(n-4)-102*Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 05 2015
-
Select[Range[10^5],IntegerQ[Sqrt[(#^2+13*#+56)*13/2]]&] (* Ivan N. Ianakiev, May 04 2015 *)
LinearRecurrence[{1, 0, 0, 102, -102, 0, 0, -1, 1}, {3, 29, 75, 432, 998, 3624, 8310, 44717, 102443}, 50] (* Vincenzo Librandi, May 05 2015 *)
-
for(n=0,10^8,issquare(binomial(n+14,3)-binomial(n+1,3))&&print1(n","))
-
Vec(x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^100)) \\ Colin Barker, May 04 2015
A202391
Indices of the smallest of four consecutive triangular numbers summing up to a square.
Original entry on oeis.org
5, 39, 237, 1391, 8117, 47319, 275805, 1607519, 9369317, 54608391, 318281037, 1855077839, 10812186005, 63018038199, 367296043197, 2140758220991, 12477253282757, 72722761475559, 423859315570605, 2470433131948079
Offset: 1
A257707
Numbers n such that T(n) + T(n+1) + ... + T(n+22) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896, 1140616029542, 2618697452438, 18636292598096, 304494582579398, 477426555904883, 7800575092244921, 55513782134933123, 127452004956911987
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,48670,-48670,0,0,0,0,-1,1).
-
LinearRecurrence[{1, 0, 0, 0, 0, 48670, -48670, 0, 0, 0, 0, -1, 1}, {56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896}, 50] (* Vincenzo Librandi, May 05 2015 *)
-
Vec(x*(10*x^12 +3*x^11 +66*x^10 +414*x^9 +624*x^8 +6762*x^7 -366022*x^6 -73005*x^5 -120678*x^4 -6762*x^3 -624*x^2 -414*x -56) / ((x -1)*(x^12 -48670*x^6 +1)) + O(x^100))
A257708
Numbers n such that T(n) + T(n+1) + ... + T(n+24) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
25, 55, 208, 382, 1273, 2287, 7480, 13390, 43657, 78103, 254512, 455278, 1483465, 2653615, 8646328, 15466462, 50394553, 90145207, 293721040, 525404830, 1711931737, 3062283823, 9977869432, 17848298158, 58155284905, 104027505175, 338953840048, 606316732942
Offset: 1
-
LinearRecurrence[{1, 6, -6, -1, 1}, {25, 55, 208, 382, 1273}, 50] (* Vincenzo Librandi, May 05 2015 *)
-
Vec(x*(x^2+4*x+5)*(2*x^2-2*x-5)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^100))
A257709
Numbers n such that T(n) + T(n+1) + ... + T(n+26) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160, 2734, 5159, 6525, 11415, 12296, 21502, 27184, 51189, 64711, 113117, 121838, 212968, 269214, 506839, 640693, 1119863, 1206192, 2108286, 2665064, 5017309, 6342327, 11085621, 11940190, 20870000
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,10,-10,0,0,0,0,-1,1).
-
I:=[8,14,39,53,103,112,206,264,509,647,1141,1230, 2160]; [n le 13 select I[n] else Self(n-1)+10*Self(n-6)-10*Self(n-7)-Self(n-12)+Self(n-13): n in [1..40]]; // Vincenzo Librandi, May 05 2015
-
LinearRecurrence[{1, 0, 0, 0, 0, 10, -10, 0, 0, 0, 0, -1, 1}, {8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160}, 50] (* Vincenzo Librandi, May 05 2015 *)
Position[Total/@Partition[Accumulate[Range[70000]],27,1],?(IntegerQ[ Sqrt[ #]]&)]//Flatten (* The program generates the first 22 terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run. *) (* _Harvey P. Dale, Jul 27 2021 *)
-
Vec(x*(2*x^12+x^11+6*x^10+2*x^9+5*x^8+2*x^7-14*x^6-9*x^5-50*x^4-14*x^3-25*x^2-6*x-8) / ((x-1)*(x^12-10*x^6+1)) + O(x^100))
A257710
Numbers n such that T(n) + T(n+1) + ... + T(n+36) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285, 2794368792, 16944086651, 37191598501, 225516999142, 467042067835, 749998177365, 6216087516438, 9982086472888, 20672740082341
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,7398,-7398,0,0,0,0,0,0,-1,1).
-
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 7398, -7398, 0, 0, 0, 0, 0, 0, -1, 1}, {5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285}, 50] (* Vincenzo Librandi, May 05 2015 *)
-
Vec(x*(5*x^16 +27*x^15 +10*x^14 +27*x^13 +259*x^12 +370*x^11 +3441*x^10 +4413*x^9 -31820*x^8 -99873*x^7 -5170*x^6 -4413*x^5 -3441*x^4 -370*x^3 -259*x^2 -27*x -5) / ((x -1)*(x^8 -86*x^4 -1)*(x^8 +86*x^4 -1)) + O(x^100))
A254443
Numbers n such that T(n) + T(n+1) + ... + T(n+21) is a square, where T(m) = A000217(m) is the m-th triangular number.
Original entry on oeis.org
35, 75, 911, 1707, 18383, 34263, 366947, 683751, 7320755, 13640955, 146048351, 272135547, 2913646463, 5429070183, 58126881107, 108309268311, 1159623975875, 2160756296235, 23134352636591, 43106816656587, 461527428756143, 859975576835703, 9207414222486467
Offset: 1
Showing 1-9 of 9 results.
Comments