cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A116476 Numbers n such that T(n) + T(n+1) + ... + T(n+10) is a square, where T(m) = A000217(m) is the m-th triangular number.

Original entry on oeis.org

13, 46, 229, 1608, 7335, 20304, 92391, 635710, 2892133, 8001886, 36403981, 250470288, 1139495223, 3152724936, 14343078279, 98684659918, 448958227885, 1242165625054, 5651136440101, 38881505539560, 176888402293623, 489410103548496
Offset: 1

Views

Author

Edward Fedorovich (chipramy(AT)012.net.il), Mar 29 2006

Keywords

Comments

Positive integers n such that 11*n^2 + 121*n + 440 = 2*m^2 for some integer m. - Max Alekseyev, Jan 20 2010

Examples

			13 belongs to this sequence since T(13) + T(14) + ... + T(23) = 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = 1936 = 44^2.
		

Crossrefs

Programs

  • Mathematica
    For[n = 1, n < 100000, n++, If[IntegerQ[Sqrt[Sum[i*(i+1)/2, {i, n, n + 10}]]], Print[n]]] (* Stefan Steinerberger, Mar 30 2006 *)
    LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{13,46,229,1608,7335,20304,92391,635710,2892133},30] (* Harvey P. Dale, Sep 01 2017 *)

Formula

For n>8, a(n) = 394*a(n-4) - a(n-8) + 2156. - Max Alekseyev, Jan 20 2010
G.f.: x*(2*x^8+7*x^7+15*x^6+33*x^5-605*x^4-1379*x^3-183*x^2-33*x-13)/((x-1)*(x^8-394*x^4+1)). - Colin Barker, Nov 22 2012

Extensions

Extended by Max Alekseyev, Jan 20 2010

A176541 Numbers n such that there exist n consecutive triangular numbers which sum to a square.

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 13, 22, 23, 25, 27, 32, 37, 39, 46, 47, 48, 49, 50, 52, 59, 66, 71, 73, 83, 94, 98, 100, 104, 107, 109, 111, 118, 121, 128, 143, 146, 147, 148, 157, 167, 176, 179, 181, 183, 191, 192, 193, 194, 200, 214, 219, 227, 239, 241, 242, 243, 244, 253, 263
Offset: 1

Views

Author

Andrew Weimholt, Apr 20 2010

Keywords

Comments

Numbers n such that there exists some x >= 0 such that A000292(x+n) - A000292(x) is a square. Terms of this sequence, for which only a finite number of solutions x exist, are given in A176542.
Integer n is in the sequence if there exist non-degenerate solutions to the Diophantine equation: 8x^2 - n*y^2 - A077415(n) = 0. A degenerate solution is one involving triangular numbers with negative indexes.
The sum of n consecutive triangular numbers starting at the j-th is Sum_{k=j..j+n-1} A000217(k) = n*(n^2 + 3*j*n + 3*j^2 - 1)/6, see A143037. - R. J. Mathar, May 06 2015

Examples

			0 is in the sequence because the sum of 0 consecutive triangular numbers is 0 (a square).
1 is in the sequence because there exist triangular numbers which are squares (cf. A001110).
2 is in the sequence because ANY 2 consecutive triangular numbers sum to a square.
3 is in the sequence because there are infinitely many solutions (cf. A165517).
4 is in the sequence because there infinitely many solutions (cf. A202391).
5 is NOT in the sequence because no 5 consecutive triangular numbers sum to a square.
For n=8, solutions to the Diophantine equation exist, but start at A000217(-2) and A000217(-6): 1 + 0 + 0 + 1 + 3 + 6 + 10 + 15 = 36 and 15 + 10 + 6 + 3 + 1 + 0 + 0 + 1 = 36. There are no non-degenerate solutions for n=8. Hence, 8 is not included in the sequence.
For n=11, there exist infinitely many solutions (cf. A116476), so 11 is in the sequence.
		

Crossrefs

Extensions

More terms from Max Alekseyev, May 10 2010

A257293 Numbers n such that T(n) + T(n+1) + ... + T(n+12) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

3, 29, 75, 432, 998, 3624, 8310, 44717, 102443, 370269, 848195, 4561352, 10448838, 37764464, 86508230, 465213837, 1065679683, 3851605709, 8822991915, 47447250672, 108688879478, 392826018504, 899858667750, 4839154355357, 11085200027723, 40064402282349
Offset: 1

Views

Author

M. F. Hasler, May 04 2015

Keywords

Comments

It is well known that T(n)+T(n+1) is always a square. T(n)+T(n+1)+T(n+2) is a square for n in A165517. T(n)+T(n+1)+T(n+2)+T(n+3) is a square for n in A202391. There is no sequence of 5, 6, 7, 8, 9 or 10 consecutive T(i)'s which sum to a square, cf. A176541. The next possible length is 11, see A116476. Then comes this sequence, corresponding to length 13.
Positive integers y in the solutions to 2*x^2-13*y^2-169*y-728 = 0. - Colin Barker, May 04 2015

Crossrefs

Cf. A116476 (length 11).

Programs

  • Magma
    I:=[3,29,75,432,998,3624,8310,44717,102443]; [n le 9 select I[n] else Self(n-1)+102*Self(n-4)-102*Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 05 2015
  • Mathematica
    Select[Range[10^5],IntegerQ[Sqrt[(#^2+13*#+56)*13/2]]&] (* Ivan N. Ianakiev, May 04 2015 *)
    LinearRecurrence[{1, 0, 0, 102, -102, 0, 0, -1, 1}, {3, 29, 75, 432, 998, 3624, 8310, 44717, 102443}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    for(n=0,10^8,issquare(binomial(n+14,3)-binomial(n+1,3))&&print1(n","))
    
  • PARI
    Vec(x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^100)) \\ Colin Barker, May 04 2015
    

Formula

G.f.: x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)). - Colin Barker, May 04 2015

A202391 Indices of the smallest of four consecutive triangular numbers summing up to a square.

Original entry on oeis.org

5, 39, 237, 1391, 8117, 47319, 275805, 1607519, 9369317, 54608391, 318281037, 1855077839, 10812186005, 63018038199, 367296043197, 2140758220991, 12477253282757, 72722761475559, 423859315570605, 2470433131948079
Offset: 1

Views

Author

Max Alekseyev, Dec 18 2011

Keywords

Comments

Positive integers n such that A000217(n) + A000217(n + 1) + A000217(n + 2) + A000217(n + 3) is a square (=A075870(n+1)^2).

Crossrefs

Formula

a(n) = A002315(n) - 2.
G.f.: x*(1+x)*(x-5) / ( (x-1)*(1-6*x+x^2) ). - R. J. Mathar, Dec 19 2011
a(n+2) = 6*a(n+1) - a(n) + 8; a(n+3) = 7*a(n+2) - 7*a(n+1) + a(n); a(n+1) = (-4 + (7 + 5*r)*(3 + 2*r)^n + (7 - 5*r)*(3 - 2*r)^n)/2 where r = sqrt(2). - Paul Weisenhorn, Jan 13 2013

A257707 Numbers n such that T(n) + T(n+1) + ... + T(n+22) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896, 1140616029542, 2618697452438, 18636292598096, 304494582579398, 477426555904883, 7800575092244921, 55513782134933123, 127452004956911987
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-23*y^2-529*y-4048 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257708 (length 25), A257709 (length 27), A257710 (length 37).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 48670, -48670, 0, 0, 0, 0, -1, 1}, {56, 470, 1094, 7856, 128534, 201539, 3293081, 23435699, 53805155, 382911281, 6256309475, 9809462822, 160274811896}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(10*x^12 +3*x^11 +66*x^10 +414*x^9 +624*x^8 +6762*x^7 -366022*x^6 -73005*x^5 -120678*x^4 -6762*x^3 -624*x^2 -414*x -56) / ((x -1)*(x^12 -48670*x^6 +1)) + O(x^100))

Formula

G.f.: x*(10*x^12 +3*x^11 +66*x^10 +414*x^9 +624*x^8 +6762*x^7 -366022*x^6 -73005*x^5 -120678*x^4 -6762*x^3 -624*x^2 -414*x -56) / ((x -1)*(x^12 -48670*x^6 +1)).

A257708 Numbers n such that T(n) + T(n+1) + ... + T(n+24) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

25, 55, 208, 382, 1273, 2287, 7480, 13390, 43657, 78103, 254512, 455278, 1483465, 2653615, 8646328, 15466462, 50394553, 90145207, 293721040, 525404830, 1711931737, 3062283823, 9977869432, 17848298158, 58155284905, 104027505175, 338953840048, 606316732942
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-25*y^2-625*y-5200 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257709 (length 27), A257710 (length 37).

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {25, 55, 208, 382, 1273}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(x^2+4*x+5)*(2*x^2-2*x-5)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^100))

Formula

G.f.: x*(x^2+4*x+5)*(2*x^2-2*x-5) / ((x-1)*(x^2-2*x-1)*(x^2+2*x-1)).

A257709 Numbers n such that T(n) + T(n+1) + ... + T(n+26) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

8, 14, 39, 53, 103, 112, 206, 264, 509, 647, 1141, 1230, 2160, 2734, 5159, 6525, 11415, 12296, 21502, 27184, 51189, 64711, 113117, 121838, 212968, 269214, 506839, 640693, 1119863, 1206192, 2108286, 2665064, 5017309, 6342327, 11085621, 11940190, 20870000
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-27*y^2-729*y-6552 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257708 (length 25), A257710 (length 37).

Programs

Formula

G.f.: x*(2*x^12+x^11+6*x^10+2*x^9+5*x^8+2*x^7-14*x^6-9*x^5-50*x^4-14*x^3-25*x^2-6*x-8) / ((x-1)*(x^12-10*x^6+1)).

A257710 Numbers n such that T(n) + T(n+1) + ... + T(n+36) is a square, where T = A000217 (triangular numbers).

Original entry on oeis.org

5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285, 2794368792, 16944086651, 37191598501, 225516999142, 467042067835, 749998177365, 6216087516438, 9982086472888, 20672740082341
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-37*y^2-1369*y-16872 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13), A257707 (length 23), A257708 (length 25), A257709 (length 27).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 7398, -7398, 0, 0, 0, 0, 0, 0, -1, 1}, {5, 32, 291, 661, 4102, 8515, 13685, 113558, 182368, 377701, 2290342, 5027232, 30483491, 63130838, 101378488, 840238915, 1349295285}, 50] (* Vincenzo Librandi, May 05 2015 *)
  • PARI
    Vec(x*(5*x^16 +27*x^15 +10*x^14 +27*x^13 +259*x^12 +370*x^11 +3441*x^10 +4413*x^9 -31820*x^8 -99873*x^7 -5170*x^6 -4413*x^5 -3441*x^4 -370*x^3 -259*x^2 -27*x -5) / ((x -1)*(x^8 -86*x^4 -1)*(x^8 +86*x^4 -1)) + O(x^100))

Formula

G.f.: x*(5*x^16 +27*x^15 +10*x^14 +27*x^13 +259*x^12 +370*x^11 +3441*x^10 +4413*x^9 -31820*x^8 -99873*x^7 -5170*x^6 -4413*x^5 -3441*x^4 -370*x^3 -259*x^2 -27*x -5) / ((x -1)*(x^8 -86*x^4 -1)*(x^8 +86*x^4 -1)).

A254443 Numbers n such that T(n) + T(n+1) + ... + T(n+21) is a square, where T(m) = A000217(m) is the m-th triangular number.

Original entry on oeis.org

35, 75, 911, 1707, 18383, 34263, 366947, 683751, 7320755, 13640955, 146048351, 272135547, 2913646463, 5429070183, 58126881107, 108309268311, 1159623975875, 2160756296235, 23134352636591, 43106816656587, 461527428756143, 859975576835703, 9207414222486467
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-22*y^2-484*y-3542 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13).

Programs

  • PARI
    Vec(x*(9*x^4+4*x^3-136*x^2-40*x-35)/((x-1)*(x^4-20*x^2+1)) + O(x^100))

Formula

G.f.: x*(9*x^4+4*x^3-136*x^2-40*x-35) / ((x-1)*(x^4-20*x^2+1)).
Showing 1-9 of 9 results.