cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A037278 Replace n with concatenation of its divisors.

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 12510, 111, 1234612, 113, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 13721, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 131, 12481632, 131133, 121734, 15735, 123469121836, 137
Offset: 1

Views

Author

Keywords

Comments

a(n) is the union of A176555(n) for n >= 1 and A176556(n) for n >= 2. See A176553 (numbers m such that concatenations of divisors of m are noncomposites) and A176554 (numbers m such that concatenations of divisors of m are nonprimes). [Jaroslav Krizek, Apr 21 2010]
a(n) is the concatenation of n-th row of the triangle in A027750.

Crossrefs

Programs

  • Haskell
    a037278 = read . concatMap show . a027750_row :: Integer -> Integer
    -- Reinhard Zumkeller, Jul 13 2013, May 01 2012, Aug 07 2011
    
  • MATLAB
    m=1;
    for u=1:34 div=divisors(u); conc=str2num(strrep(num2str(div), ' ', ''));
       sol(m)=conc; m=m+1;
    end
    sol % Marius A. Burtea, Jun 01 2019
    
  • Magma
    k:=1; sol:=[];
    for u in [1..34] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];end for;
         sol[u]:=conc; k:=k+1;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
    
  • Mathematica
    a[n_] := ToExpression[ StringJoin[ ToString /@ Divisors[n] ] ]; Table[ a[n], {n, 1, 34}] (* Jean-François Alcover, Dec 01 2011 *)
    FromDigits[Flatten[IntegerDigits/@Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    a(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ Michel Marcus, Jun 01 2019 and Sep 22 2022
    
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n)))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 31 2020

Formula

A134681(n) = A055642(a(n)). - Reinhard Zumkeller, Nov 06 2007

Extensions

More terms from Erich Friedman

A176554 Numbers n such that concatenations of divisors of n are nonprime.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

See A037278(n) = concatenation of divisors of n. See A176556 for corresponding values of concatenations. Complement of A176553(n) for n >= 2.

Examples

			a(6) = 8: divisors of 8 are 1,2,4,8 and their concatenation 1248 is nonprime.
		

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]]]&] (* Harvey P. Dale, Jul 09 2021 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010
Showing 1-2 of 2 results.