cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A037278 Replace n with concatenation of its divisors.

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 12510, 111, 1234612, 113, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 13721, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 131, 12481632, 131133, 121734, 15735, 123469121836, 137
Offset: 1

Views

Author

Keywords

Comments

a(n) is the union of A176555(n) for n >= 1 and A176556(n) for n >= 2. See A176553 (numbers m such that concatenations of divisors of m are noncomposites) and A176554 (numbers m such that concatenations of divisors of m are nonprimes). [Jaroslav Krizek, Apr 21 2010]
a(n) is the concatenation of n-th row of the triangle in A027750.

Crossrefs

Programs

  • Haskell
    a037278 = read . concatMap show . a027750_row :: Integer -> Integer
    -- Reinhard Zumkeller, Jul 13 2013, May 01 2012, Aug 07 2011
    
  • MATLAB
    m=1;
    for u=1:34 div=divisors(u); conc=str2num(strrep(num2str(div), ' ', ''));
       sol(m)=conc; m=m+1;
    end
    sol % Marius A. Burtea, Jun 01 2019
    
  • Magma
    k:=1; sol:=[];
    for u in [1..34] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];end for;
         sol[u]:=conc; k:=k+1;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
    
  • Mathematica
    a[n_] := ToExpression[ StringJoin[ ToString /@ Divisors[n] ] ]; Table[ a[n], {n, 1, 34}] (* Jean-François Alcover, Dec 01 2011 *)
    FromDigits[Flatten[IntegerDigits/@Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    a(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ Michel Marcus, Jun 01 2019 and Sep 22 2022
    
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n)))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 31 2020

Formula

A134681(n) = A055642(a(n)). - Reinhard Zumkeller, Nov 06 2007

Extensions

More terms from Erich Friedman

A176553 Numbers m such that concatenations of divisors of m are noncomposites.

Original entry on oeis.org

1, 3, 7, 9, 13, 21, 31, 37, 67, 73, 79, 97, 103, 109, 121, 151, 163, 181, 183, 193, 219, 223, 229, 237, 277, 283, 307, 363, 367, 373, 381, 409, 433, 439, 471, 487, 489, 499, 511, 523, 571, 601, 603, 607, 613, 619, 657, 669, 709, 733, 787, 811, 817, 819, 823, 841, 867
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

Do all primes p > 5 have a multiple in this sequence? This holds at least for p < 10^4. - Charles R Greathouse IV, Sep 23 2016
Conjecture: this sequence is a subsequence of A003136 (Loeschian numbers). - Davide Rotondo, Jan 02 2022
If m is not in A003136, there is a prime p == 2 (mod 3) such that the exponent of p in the factorization of m is odd, then we have 3 | 1+p | 1+p+p^2+...+p^(2*r-1) | sigma(m), sigma = A000203 is the sum of divisors, so the concatenation of the divisors of m is also divisible by 3. - Jianing Song, Aug 22 2022

Examples

			a(6) = 21: the divisors of 21 are 1,3,7,21, and their concatenation 13721 is noncomposite.
		

Crossrefs

Subsequence of A045572.

Programs

  • Mathematica
    Select[Range[10^3], ! CompositeQ@ FromDigits@ Flatten@ IntegerDigits@ Divisors@ # &] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    is(n)=my(d=divisors(n)); d[1]="1"; isprime(eval(concat(d))) || n==1 \\ Charles R Greathouse IV, Sep 23 2016
    
  • Python
    from sympy import divisors, isprime
    def ok(m): return m==1 or isprime(int("".join(str(d) for d in divisors(m))))
    print([m for m in range(1, 900) if ok(m)]) # Michael S. Branicky, Feb 05 2022

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010
Data corrected by Bill McEachen, Nov 03 2021

A176556 Nonprime concatenations of divisors of some k, ordered by k.

Original entry on oeis.org

1, 12, 124, 15, 1236, 1248, 12510, 111, 1234612, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 12481632, 131133, 121734, 15735, 123469121836, 121938, 131339
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

Intersection of A037278 and A018252.

Examples

			For n = 6; a(6) = 1248 because A176554(6) = 8 and divisors of 8 are 1, 2, 4, 8; concatenation of divisors A037278(8) = 1248 is nonprime number.
		

Formula

a(n) = A037278(A176554(n)).

Extensions

Extended and edited by Charles R Greathouse IV, Apr 27 2010

A176590 Numbers k such that both concatenation of divisors of k and reverse concatenation of divisors of k are nonprime.

Original entry on oeis.org

1, 2, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Jaroslav Krizek, Apr 21 2010

Keywords

Comments

Numbers k such that both A037278(k) and A176558(k) are nonprime.

Examples

			10 is a term; divisors of 10: 1, 2, 5, 10; both concatenation of divisors 12510 and reverse concatenation of divisors 10521 are nonprime numbers.
Sequence of corresponding values of concatenations of divisors of a(n): 1, 12, 15, 1236, 1248, 12510, 111, ...
Sequence of corresponding values of reverse concatenations of divisors of a(n): 1, 21, 51, 6321, 8421, 10521, 111, ...
		

Crossrefs

Formula

Intersection of A176554 and A175354. - Jason Yuen, Feb 08 2025

Extensions

Extended and revised by Charles R Greathouse IV, Apr 24 2010
Showing 1-4 of 4 results.