cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A037278 Replace n with concatenation of its divisors.

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 12510, 111, 1234612, 113, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 13721, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 131, 12481632, 131133, 121734, 15735, 123469121836, 137
Offset: 1

Views

Author

Keywords

Comments

a(n) is the union of A176555(n) for n >= 1 and A176556(n) for n >= 2. See A176553 (numbers m such that concatenations of divisors of m are noncomposites) and A176554 (numbers m such that concatenations of divisors of m are nonprimes). [Jaroslav Krizek, Apr 21 2010]
a(n) is the concatenation of n-th row of the triangle in A027750.

Crossrefs

Programs

  • Haskell
    a037278 = read . concatMap show . a027750_row :: Integer -> Integer
    -- Reinhard Zumkeller, Jul 13 2013, May 01 2012, Aug 07 2011
    
  • MATLAB
    m=1;
    for u=1:34 div=divisors(u); conc=str2num(strrep(num2str(div), ' ', ''));
       sol(m)=conc; m=m+1;
    end
    sol % Marius A. Burtea, Jun 01 2019
    
  • Magma
    k:=1; sol:=[];
    for u in [1..34] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];end for;
         sol[u]:=conc; k:=k+1;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
    
  • Mathematica
    a[n_] := ToExpression[ StringJoin[ ToString /@ Divisors[n] ] ]; Table[ a[n], {n, 1, 34}] (* Jean-François Alcover, Dec 01 2011 *)
    FromDigits[Flatten[IntegerDigits/@Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    a(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ Michel Marcus, Jun 01 2019 and Sep 22 2022
    
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n)))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 31 2020

Formula

A134681(n) = A055642(a(n)). - Reinhard Zumkeller, Nov 06 2007

Extensions

More terms from Erich Friedman

A176554 Numbers n such that concatenations of divisors of n are nonprime.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

See A037278(n) = concatenation of divisors of n. See A176556 for corresponding values of concatenations. Complement of A176553(n) for n >= 2.

Examples

			a(6) = 8: divisors of 8 are 1,2,4,8 and their concatenation 1248 is nonprime.
		

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]]]&] (* Harvey P. Dale, Jul 09 2021 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010

A176555 Noncomposite concatenations of divisors of some k, ordered by k.

Original entry on oeis.org

1, 13, 17, 139, 113, 13721, 131, 137, 167, 173, 179, 197, 1103, 1109, 111121, 1151, 1163, 1181, 1361183, 1193, 1373219, 1223, 1229, 1379237, 1277, 1283, 1307, 131133121363, 1367, 1373, 13127381, 1409, 1433, 1439, 13157471, 1487, 13163489
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

Intersection of A037278 and A018252.

Examples

			For n = 6; a(6) = 13721 because A176553(6) = 21, and divisors of 21 are 1, 3, 7, 21; concatenation of divisors A037278(21) = 13721 is noncomposite number.
		

Formula

a(n) = A037278(A176553(n)).

Extensions

Extended and edited by Charles R Greathouse IV, Apr 27 2010

A176589 Numbers k such that both concatenation of divisors of k and reverse concatenation of divisors of k are noncomposite.

Original entry on oeis.org

1, 3, 7, 13, 31, 97, 103, 109, 151, 181, 193, 367, 409, 439, 487, 523, 571, 601, 613, 733, 811, 823, 1069, 1117, 1279, 1483, 1489, 1579, 1597, 1789, 1831, 1867, 1897, 1939, 2161, 2203, 2239, 2251, 2269, 2281, 2437, 2503, 2509, 2539, 2659, 2671, 2689, 2953
Offset: 1

Views

Author

Jaroslav Krizek, Apr 21 2010

Keywords

Comments

Numbers k such that both A037278(k) and A176558(k) are noncomposite.

Examples

			31 is a term; divisors of 31: 1, 31; both concatenation of divisors 131 and reverse concatenation of divisors 311 are noncomposite.
1897 is a term; divisors of 1897: 1, 7, 271, 1897; both concatenation of divisors 172711897 and reverse concatenation of divisors 189727171 are noncomposite.
Sequence of corresponding values of concatenations of divisors of a(n): 1, 13, 17, 113, 131, 197, ...
Sequence of corresponding values of reverse concatenations of divisors of a(n): 1, 31, 71, 131, 311, 971, ...
		

Crossrefs

Formula

Intersection of A176553 and A089374. - Jason Yuen, Feb 08 2025

Extensions

Expanded and revised by Charles R Greathouse IV, Apr 24 2010

A272141 Numbers such that the concatenation of their aliquot parts, in ascending order, are prime numbers.

Original entry on oeis.org

9, 14, 21, 26, 27, 34, 35, 46, 49, 55, 57, 58, 62, 74, 98, 115, 118, 143, 155, 158, 161, 166, 169, 178, 183, 187, 194, 201, 202, 209, 214, 215, 218, 219, 221, 226, 245, 265, 279, 287, 295, 298, 309, 314, 323, 326, 327, 329, 335, 341, 355, 371, 374, 377, 381
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Examples

			Aliquot parts of 9 are 1, 3 and concat(1,3) = 13 is prime;
aliquot parts of 3127 are 1, 53, 59 and concat(1,53,59) = 15359 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,b,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
    for k from 1 to nops(a)-1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od;
    if isprime(b) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range@ 384, PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Most@ Divisors@ # &] (* Michael De Vlieger, Apr 21 2016 *)

A272142 Numbers such that the concatenation of their aliquot parts, in descending order, are prime numbers.

Original entry on oeis.org

8, 9, 10, 26, 34, 35, 49, 55, 56, 57, 62, 63, 75, 76, 77, 94, 95, 115, 122, 125, 142, 144, 146, 161, 169, 183, 194, 196, 203, 206, 219, 226, 235, 238, 254, 262, 265, 274, 275, 278, 290, 299, 302, 304, 305, 309, 320, 322, 332, 336, 338, 346, 355, 358, 361, 362
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Examples

			Aliquot parts of 8 are 1, 2, 4 and concat(4,2,1) = 421 is prime;
aliquot parts of 1822 are 1, 2, 911 and concat(911,2,1) = 91121 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,b,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
    for k from nops(a)-1 by -1 to 1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od;
    if isprime(b) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range@ 362, PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Reverse@ Most@ Divisors@ # &] (* Michael De Vlieger, Apr 21 2016 *)
Showing 1-6 of 6 results.