cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A378715 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis dodecahedron.

Original entry on oeis.org

2, 7, 0, 6, 6, 9, 4, 6, 4, 5, 4, 7, 9, 2, 2, 8, 7, 8, 5, 6, 2, 5, 8, 6, 4, 4, 3, 8, 3, 0, 6, 8, 2, 8, 0, 4, 5, 6, 9, 8, 4, 4, 5, 4, 5, 5, 5, 7, 1, 7, 1, 3, 1, 9, 1, 2, 4, 4, 6, 3, 9, 9, 4, 2, 6, 1, 1, 6, 0, 6, 9, 9, 3, 3, 2, 9, 9, 0, 5, 8, 4, 7, 8, 6, 4, 1, 0, 1, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 07 2024

Keywords

Comments

The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).

Examples

			2.7066946454792287856258644383068280456984454555717...
		

Crossrefs

Cf. A378712 (surface area), A378713 (volume), A378714 (inradius), A378393 (midradius).
Cf. A177870, A195698 and A195702 (dihedral angles of a truncated cuboctahedron (great rhombicuboctahedron)).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(71 + 12*Sqrt[2])/97], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DisdyakisDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(71 + 12*sqrt(2))/97) = arccos(-(71 + 12*A002193)/97).

A378394 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal icositetrahedron.

Original entry on oeis.org

2, 4, 1, 0, 6, 1, 3, 1, 4, 1, 6, 5, 3, 4, 0, 7, 6, 0, 6, 1, 5, 3, 6, 6, 5, 7, 8, 5, 4, 6, 5, 9, 4, 9, 1, 8, 5, 9, 8, 0, 3, 6, 2, 9, 0, 6, 0, 8, 9, 5, 9, 1, 9, 8, 3, 5, 2, 1, 7, 8, 6, 7, 1, 8, 7, 8, 5, 0, 3, 5, 1, 5, 8, 3, 3, 7, 2, 6, 7, 4, 1, 9, 4, 7, 8, 5, 0, 5, 5, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			2.410613141653407606153665785465949185980362906...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378392 (inradius), A378393 (midradius).
Cf. A177870 and A195702 (dihedral angles of a (small) rhombicuboctahedron).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[32] - 7], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalIcositetrahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(4*sqrt(2) + 7)/17) \\ Charles R Greathouse IV, Feb 11 2025

Formula

Equals arcsec(4*sqrt(2) - 7) = arcsec(A010487 - 7).
Equals arccos(-(4*sqrt(2) + 7)/17) = arccos(-(A010487 + 7)/17).

A384473 Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 0, 8, 3, 6, 6, 1, 2, 0, 1, 6, 2, 5, 6, 1, 4, 6, 7, 0, 0, 8, 0, 4, 6, 9, 3, 5, 2, 7, 7, 1, 6, 4, 4, 2, 9, 8, 9, 6, 1, 3, 3, 4, 3, 1, 0, 0, 3, 4, 2, 3, 5, 2, 3, 9, 7, 3, 8, 8, 0, 2, 8, 4, 3, 2, 0, 7, 0, 3, 4, 6, 2, 9, 1, 5, 7, 9, 8, 0, 4, 9, 4, 1, 5, 2, 1, 2, 4, 6, 8, 8, 1, 2, 1, 0, 1, 3, 3, 1, 8
Offset: 3

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			108.366120162561467008046935277164429896133431...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]])180/Pi,10,100][[1]] (* or *)
    RealDigits[(Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])])180/Pi,10,100][[1]]

Formula

Equals 135 - 180*arcsin(sqrt(3)*sin(Pi/12))/Pi.
Equals (Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))))*180/Pi.
Equals (540 - 2*A384475 - A384477)/2.
A384475 < this constant < A384477.

A384474 Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 8, 9, 1, 3, 4, 5, 5, 9, 4, 4, 4, 8, 5, 1, 0, 4, 1, 8, 6, 8, 7, 1, 7, 3, 4, 7, 8, 9, 5, 2, 7, 3, 9, 1, 9, 9, 0, 2, 4, 7, 7, 9, 2, 2, 5, 3, 0, 7, 7, 4, 6, 9, 6, 6, 9, 2, 7, 7, 4, 8, 7, 7, 0, 3, 7, 2, 8, 8, 7, 5, 9, 6, 9, 4, 5, 8, 5, 4, 4, 4, 3, 1, 4, 7, 8, 6, 3, 2, 3, 2, 3, 2, 2, 6, 8, 1, 0, 3, 1
Offset: 1

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			1.891345594448510418687173478952739199024779225...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Cf. A228719, A384473 (in degrees).

Programs

  • Mathematica
    RealDigits[3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]],10,100][[1]] (* or *)
    RealDigits[Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])],10,100][[1]]

Formula

Equals 3*Pi/4 - arcsin(sqrt(3)*sin(Pi/12)).
Equals Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))).
Equals (3*Pi - 2*A384476 - A384478)/2.
A384476 < this constant < A384478.

A232716 Decimal expansion of the ratio of the length of the boundary of any parbelos to the length of the boundary of its associated arbelos: (sqrt(2) + log(1 + sqrt(2))) / Pi.

Original entry on oeis.org

7, 3, 0, 7, 0, 8, 0, 8, 4, 2, 4, 8, 1, 4, 3, 0, 9, 8, 3, 4, 5, 4, 5, 9, 3, 8, 9, 9, 7, 0, 9, 9, 0, 1, 3, 7, 7, 3, 6, 7, 2, 3, 2, 8, 7, 2, 9, 1, 6, 6, 0, 2, 7, 5, 7, 3, 5, 4, 9, 8, 3, 9, 1, 9, 5, 1, 0, 0, 7, 2, 9, 3, 2, 5, 3, 5, 5, 1, 3, 5, 4, 0, 2, 6, 0, 1, 4, 0, 8, 2, 9, 3, 5, 0, 7, 6, 2, 1, 1, 9, 6
Offset: 0

Views

Author

Jonathan Sondow, Nov 28 2013

Keywords

Comments

Same as decimal expansion of P/Pi, where P is the Universal parabolic constant (A103710). - Jonathan Sondow, Jan 19 2015
According to Wadim Zudilin, Campbell's formula (see below) follows from results of Borwein, Borwein, Glasser, Wan (2011): Take n=-2, s=1/4 in equations (4) and (20) to see that the formula is about evaluating K_{-2,1/4}. Take r=-1/2, s=1/4 in (76) to see that K_{-2,1/4} = cos(Pi/4)-K_{0,1/4}/16. Finally, use (51) and (52) to conclude that K_{0,1/4} = 2G_{1/4} = 2*log(1+sqrt(2)). - Jonathan Sondow, Sep 03 2016

Examples

			0.730708084248143098345459389970990137736723287291660275735498...
		

Crossrefs

Reciprocal of A232717. Ratio of areas is A177870.

Programs

  • Magma
    R:= RealField(); (Sqrt(2) + Log(1 + Sqrt(2)))/Pi(R); // G. C. Greubel, Feb 02 2018
  • Mathematica
    RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/Pi,10,100]
  • PARI
    (sqrt(2) + log(1 + sqrt(2)))/Pi \\ G. C. Greubel, Feb 02 2018
    

Formula

Equals A103710 / A000796.
Empirical: equals 3F2([-1/2,1/4,3/4],[1/2,1],1). - John M. Campbell, Aug 27 2016

A387320 Decimal expansion of the largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 6, 8, 7, 1, 5, 0, 5, 0, 5, 6, 3, 7, 0, 7, 0, 6, 2, 2, 0, 5, 8, 2, 3, 7, 6, 7, 1, 0, 3, 4, 2, 1, 7, 8, 7, 2, 4, 0, 8, 0, 9, 4, 2, 4, 3, 7, 8, 8, 1, 6, 0, 5, 3, 3, 1, 8, 5, 9, 1, 6, 8, 3, 2, 2, 7, 7, 2, 3, 2, 9, 7, 1, 2, 7, 7, 5, 0, 1, 0, 3, 2, 5, 2, 6, 9, 7, 3, 5, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 27 2025

Keywords

Comments

This is the dihedral angle between triangular faces in the antiprism part of the solid.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.687150505637070622058237671034217872408094243788...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387321, A387322, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(1 - Sqrt[8 + Sqrt[32]])/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((1 - 2*sqrt(2 + sqrt(2)))/3) = arccos((1 - 2*sqrt(2 + A002193))/3).

A387321 Decimal expansion of the second largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 6, 4, 1, 2, 0, 9, 0, 0, 0, 3, 7, 4, 0, 3, 9, 5, 4, 4, 0, 2, 1, 4, 5, 1, 0, 5, 2, 8, 5, 1, 1, 3, 5, 8, 3, 2, 6, 7, 9, 8, 7, 1, 6, 7, 8, 2, 5, 4, 8, 2, 9, 5, 2, 6, 2, 7, 5, 0, 5, 3, 7, 4, 4, 6, 2, 4, 5, 2, 5, 3, 7, 1, 3, 7, 8, 9, 6, 2, 7, 0, 0, 0, 5, 2, 0, 7, 5, 4, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 27 2025

Keywords

Comments

This is the dihedral angle between adjacent triangular faces at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.6412090003740395440214510528511358326798716782548...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387322, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[3]] + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]],2], 10, 100]]

Formula

Equals arcsec(sqrt(3)) + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A195696 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A195696 + A387323.

A387322 Decimal expansion of the fourth largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 4, 7, 1, 2, 9, 0, 5, 4, 5, 6, 4, 6, 9, 7, 8, 5, 7, 5, 4, 7, 3, 2, 5, 4, 7, 9, 6, 1, 5, 5, 2, 5, 3, 7, 9, 9, 4, 8, 5, 7, 4, 9, 3, 3, 3, 0, 8, 8, 6, 0, 0, 4, 9, 0, 5, 5, 9, 0, 9, 1, 7, 6, 3, 3, 7, 9, 5, 6, 7, 4, 2, 7, 0, 4, 6, 5, 3, 8, 4, 9, 4, 3, 2, 1, 6, 9, 2, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.4712905456469785754732547961552537994857493330886...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[Pi/4 + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]], 4], 10, 100]]

Formula

Equals Pi/4 + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A003881 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A003881 + A387323.

A387323 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

1, 6, 8, 5, 8, 9, 2, 3, 8, 2, 2, 4, 9, 5, 3, 0, 2, 6, 5, 8, 5, 7, 5, 9, 3, 9, 5, 0, 3, 3, 5, 3, 7, 8, 0, 7, 8, 4, 3, 6, 4, 5, 6, 9, 8, 3, 2, 4, 4, 8, 2, 4, 0, 3, 5, 3, 1, 5, 3, 5, 5, 6, 1, 5, 3, 0, 2, 6, 1, 3, 3, 2, 5, 4, 7, 4, 9, 8, 6, 2, 4, 4, 6, 6, 4, 6, 8, 3, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the octagonal face.

Examples

			1.6858923822495302658575939503353780784364569832448...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387322.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).

A232715 Decimal expansion of the ratio of the area of a parbelos to the area of its associated arbelos: 4/(3*Pi).

Original entry on oeis.org

4, 2, 4, 4, 1, 3, 1, 8, 1, 5, 7, 8, 3, 8, 7, 5, 6, 2, 0, 5, 0, 3, 5, 6, 7, 0, 2, 3, 2, 6, 7, 0, 4, 9, 6, 5, 4, 2, 5, 2, 2, 5, 7, 2, 1, 9, 7, 4, 5, 5, 0, 5, 2, 9, 9, 9, 3, 7, 7, 9, 5, 8, 4, 1, 5, 7, 0, 5, 8, 1, 2, 7, 0, 2, 4, 6, 0, 4, 0, 9, 3, 5, 7, 3, 6
Offset: 0

Views

Author

Jonathan Sondow, Nov 28 2013

Keywords

Comments

Also distance from the diameter of unit semicircle to its centroid. - Franck Maminirina Ramaharo, Oct 22 2018

Examples

			0.424413181578387562050356702326704965425225721974550529993779...
		

Crossrefs

Reciprocal of A177870. Ratio of lengths of boundaries is A232716.

Programs

Showing 1-10 of 11 results. Next