cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123160 Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

T(n,k) is also the number of order-preserving partial transformations (of an n-element chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Aug 25 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  18,  10;
  1, 16,  60,  80,  35;
  1, 25, 150, 350, 350, 126;
  ...
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305

Crossrefs

Programs

  • Magma
    [Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
    
  • Maple
    T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
    Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
    max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
  • SageMath
    def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
    flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022

Formula

T(n, m) = n!*(n + m - 1)!/((n - m)!*(n - 1)!(m!)^2), with T(0, 0) = 1.
T(n, k) = binomial(n,k)*binomial(n+k-1,k). The row polynomials (except the first) are (1+x)*P(n,0,1,2x+1), where P(n,a,b,x) denotes the Jacobi polynomial. The columns of this triangle give the diagonals of A122899. - Peter Bala, Jan 24 2008
T(n, k) = binomial(n,k)*(n+k-1)!/((n-1)!*k!).
T(n, k)= binomial(n,k)*binomial(n+k-1,n-1). - Abdullahi Umar, Aug 25 2008
G.f.: (x+1)/(2*sqrt((1-x)^2-4*y)) + 1/2. - Vladimir Kruchinin, Jun 16 2015
From _Peter Bala, Jul 20 2015: (Start)
O.g.f. (1 + x)/( 2*sqrt((1 - x)^2 - 4*x*y) ) + 1/2 = 1 + (1 + y)*x + (1 + 4*y + 3*y^2)*x^2 + ....
For n >= 1, the n-th row polynomial R(n,y) = (1 + y)*r(n-1,y), where r(n,y) is the n-th row polynomial of A178301.
exp( Sum_{n >= 1} R(n,y)*x^n/n ) = 1 + (1 + y)*x + (1 + 3*y + 2*y^2)*x^2 + ... is the o.g.f for A088617. (End)
From G. C. Greubel, Jun 19 2022: (Start)
T(n, n) = A088218(n).
T(n, n-1) = A037965(n).
T(n, n-2) = A085373(n-2).
Sum_{k=0..n} T(n, k) = A123164(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005773(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 26 2006 and Jul 03 2008

A182626 a(n) = Hypergeometric([-n, n], [1], 2).

Original entry on oeis.org

1, -1, 5, -25, 129, -681, 3653, -19825, 108545, -598417, 3317445, -18474633, 103274625, -579168825, 3256957317, -18359266785, 103706427393, -586889743905, 3326741166725, -18885056428537, 107347191941249, -610916200215241
Offset: 0

Views

Author

Michael Somos, Feb 06 2011

Keywords

Examples

			G.f. = 1 - x + 5*x^2 - 25*x^3 + 129*x^4 - 681*x^5 + 3653*x^6 - 19825*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/2 + 1/2*(1 + x)/Sqrt(1 + 6*x + x^2))); // G. C. Greubel, Aug 14 2018
  • Maple
    seq(simplify(hypergeom([-n, n],[1],2)), n=0..21); # Peter Luschny, Mar 23 2015
  • Mathematica
    a[n_] := Hypergeometric2F1[ -n, n, 1, 2]; Array[a, 20, 0]
  • PARI
    {a(n) = sum( k=0, abs(n), 2^k * prod( i=0, k-1, i^2 - n^2 ) / k!^2)}
    

Formula

a(-n) = a(n). a(n) = (-1)^n * A002002(n) if n>0. a(n) = (-1)^n * A026003(2*n - 1) if n>0.
G.f.: 1 / ( 1 + x / (1 + 4*x / (1 - x^2 / (1 + 4*x / (1 - x^2 / (1 + 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = (-1)^n*Sum_{k=0..n} A253283(n,k). - Peter Luschny, Mar 23 2015
From Peter Bala, Jun 17 2015: (Start)
a(n) = Sum_{k = 0..n} (-2)^k*binomial(n,k)*binomial(n+k-1,k) = (-1)^n*Sum_{k = 0..n-1} binomial(n,k+1)*binomial(n+k,k) = -Sum_{k = 0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k).
a(n) = -R(n-1,-2) for n >= 1, where R(n,x) denotes the n-th row polynomial of A178301.
a(n) = [x^n] ((x - 1)/(1 - 2*x))^n. Cf. A001003(n) = (-1)^(n+1)/(n+1)*[x^n] ((x - 1)/(1 - 2*x))^(n+1).
O.g.f.: 1/2 + 1/2*(1 + x)/sqrt(1 + 6*x + x^2).
exp( Sum_{n >= 1} a(n)*(-x)^n/n ) = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + ... is the o.g.f. for A001003.
Recurrence: n*(3 - 2*n )*a(n) = 2*(6*n^2 - 12*n + 5)*a(n-1) + (2*n - 1)*(n - 2)*a(n-2) with a(0) = 1, a(1) = -1. (End)

A178302 Multiply the irregular Array A125108 by A178300;compute a(n)the vertical sums.

Original entry on oeis.org

1, 4, 19, 104, 601, 3622
Offset: 1

Views

Author

Alford Arnold, May 30 2010

Keywords

Comments

The row sums resulting from the defined multiplication yields A038675.
A178301 is a triangular sub-array of A178300 times A125108
since A007318 is a sub-array of A125108.

Examples

			A125108(7) = 2 and appears on row five of A125108 so
A178300(5) times A125108(7) is 4*2 =8.
As a cross-check, note that A178301 = 1,4,19,96,...
and with the additional 8 in column 4 we have a(n) = 1,4,19,104,...
		

Crossrefs

Showing 1-3 of 3 results.