Original entry on oeis.org
1, 2, 8, 38, 192, 1002, 5336, 28814, 157184, 864146, 4780008, 26572086, 148321344, 830764794, 4666890936, 26283115038, 148348809216, 838944980514, 4752575891144, 26964373486406, 153196621856192, 871460014012682, 4962895187697048, 28292329581548718, 161439727075246592
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8
- A. Laradji and A. Umar, Asymptotic results for semigroups of order-preserving partial transformations Comm. Algebra 34 (2006), 1071-1075. [From _Abdullahi Umar_, Oct 11 2008]
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
-
[1] cat [n le 2 select 2*4^(n-1) else (4*(3*(n-1)^2-1)*Self(n-1) - (2*n-1)*(n-2)*Self(n-2))/((2*n-3)*(n)): n in [1..30]]; // G. C. Greubel, Jul 19 2023
-
a[n_]:= a[n]= Sum[Binomial[n+k-1,k]*Binomial[n,k], {k,0,n}];
Table[a[n], {n,0,30}]
-
def A123164(n): return sum(binomial(n,j)*binomial(n+j-1,j) for j in range(n+1))
[A123164(n) for n in range(31)] # G. C. Greubel, Jul 19 2023
A088617
Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 2;
[3] 1, 6, 10, 5;
[4] 1, 10, 30, 35, 14;
[5] 1, 15, 70, 140, 126, 42;
[6] 1, 21, 140, 420, 630, 462, 132;
[7] 1, 28, 252, 1050, 2310, 2772, 1716, 429;
[8] 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430;
[9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
- C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
- A. Kirillov, On Some Quadratic Algebras I 1/2: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss-Catalan, Universal Tutte and Reduced Polynomials, arXiv preprint arXiv:1502.00426 [math.RT], 2016.
- M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
- Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College, 2022.
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
- Jason P. Smith, The poset of graphs ordered by induced containment, arXiv:1806.01821 [math.CO], 2018.
-
[[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
-
R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
-
Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
-
{T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
-
flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
A178301
Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378
Offset: 0
n=0: 1;
n=1: 1, 3;
n=2: 1, 8, 10;
n=3: 1, 15, 45, 35;
n=4: 1, 24, 126, 224, 126;
n=5: 1, 35, 280, 840, 1050, 462;
n=6: 1, 48, 540, 2400, 4950, 4752, 1716;
n=7: 1, 63, 945, 5775, 17325, 27027, 21021, 6435;
-
A178301 := proc(n,k)
binomial(n,k)*binomial(n+k+1,n+1) ;
end proc: # R. J. Mathar, Mar 24 2013
R := proc(n) add((-1)^(n+k)*(2*k+1)*orthopoly:-P(k,2*x+1)/(n+1), k=0..n) end:
for n from 0 to 6 do seq(coeff(R(n), x, k), k=0..n) od; # Peter Luschny, Aug 25 2021
-
Flatten[Table[Binomial[n,k]Binomial[n+k+1,n+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 23 2014 *)
-
create_list(binomial(n,k)*binomial(n+k+1,n+1),n,0,12,k,0,n); /* Emanuele Munarini, Dec 16 2016 */
-
R(n,x) = sum(k=0,n, (-1)^(n+k) * (2*k+1) * pollegendre(k,2*x+1)) / (n+1); \\ Max Alekseyev, Aug 25 2021
A122899
Triangle with row sums counting directed animals.
Original entry on oeis.org
1, 1, 1, 0, 4, 1, 0, 3, 9, 1, 0, 0, 18, 16, 1, 0, 0, 10, 60, 25, 1, 0, 0, 0, 80, 150, 36, 1, 0, 0, 0, 35, 350, 315, 49, 1, 0, 0, 0, 0, 350, 1120, 588, 64, 1, 0, 0, 0, 0, 126, 1890, 2940, 1008
Offset: 0
Triangle begins
1,
1, 1,
0, 4, 1,
0, 3, 9, 1,
0, 0, 18, 16, 1,
0, 0, 10, 60, 25, 1,
0, 0, 0, 80, 150, 36, 1,
0, 0, 0, 35, 350, 315, 49, 1,
0, 0, 0, 0, 350, 1120, 588, 64, 1,
0, 0, 0, 0, 126, 1890, 2940, 1008, 81, 1,
0, 0, 0, 0, 0, 1512, 7350, 6720, 1620, 100, 1
A306226
Triangle read by rows: T(n,k) = Sum_{i=0..n/2} C(n-i,i)*C(n-i,k-i)*C(n-1,i) (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 7, 11, 5, 1, 13, 36, 37, 13, 1, 21, 92, 160, 123, 35, 1, 31, 200, 520, 655, 401, 96, 1, 43, 387, 1405, 2575, 2541, 1293, 267, 1, 57, 686, 3325, 8295, 11711, 9492, 4131, 750, 1, 73, 1136, 7112, 23128, 43736, 50148, 34476, 13107, 2123, 1, 91, 1782, 14040, 57708, 140112, 212856, 205332, 122535, 41353, 6046
Offset: 0
1;
1, 1;
1, 3, 2;
1, 7, 11, 5;
1, 13, 36, 37, 13;
1, 21, 92, 160, 123, 35;
-
T(n,k):=sum(binomial(n-i,i)*binomial(n-i,k-i)*binomial(n-1,i),i,0,n/2);
Showing 1-5 of 5 results.
Comments