cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178719 Partial sums of (1/5)*floor(6^n/7).

Original entry on oeis.org

0, 0, 1, 7, 44, 266, 1599, 9597, 57586, 345520, 2073125, 12438755, 74632536, 447795222, 2686771339, 16120628041, 96723768254, 580342609532, 3482055657201, 20892333943215, 125354003659300, 752124021955810, 4512744131734871, 27076464790409237, 162458788742455434, 974752732454732616
Offset: 0

Views

Author

Mircea Merca, Dec 26 2010

Keywords

Comments

Partial sums of A033116.

Examples

			a(3) = (1/5)*(floor(6^1/7) + floor(6^2/7) + floor(6^3/7)) = (1/5)*(0+5+30) = (1/5)*35 = 7.
		

Crossrefs

Column k=6 of A368296.
Cf. A033116.

Programs

  • Magma
    [(1/5)*Floor((12*6^n-35*n-12)/70): n in [0..30]]; // Vincenzo Librandi, Jun 21 2011
    
  • Maple
    A178719 := proc(n) add( floor(6^i/7)/5,i=0..n) ; end proc:
  • Mathematica
    f[n_] := Floor[6^n/7]/5; Accumulate@ Array[f, 22]
    CoefficientList[Series[x^2/((1+x)(1-6x)(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
  • PARI
    vector(30, n, n--; (((12*6^n-35*n-12)/70)\1)/5) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [floor((12*6^n-35*n-12)/70)/5 for n in (0..30)] # G. C. Greubel, Jan 24 2019

Formula

a(n) = (1/5)*round((24*6^n - 70*n - 49)/140).
a(n) = (1/5)*floor((12*6^n - 35*n - 12)/70).
a(n) = (1/5)*ceiling((12*6^n - 35*n - 37)/70).
a(n) = (1/5)*round((12*6^n - 35*n - 12)/70).
a(n) = a(n-2) + (6^(n-1) - 1)/5, n > 1.
a(n) = 7*a(n-1) - 5*a(n-2) - 7*a(n-3) + 6*a(n-4), n > 3.
G.f.: x^2 / ( (1+x)*(1-6*x)*(1-x)^2 ).
a(n) = (24*6^n - 70*n + 25*(-1)^n - 49)/700. - Bruno Berselli, Feb 18 2011
a(n) = (floor(6^(n+1)/35) - floor((n+1)/2))/5. - Seiichi Manyama, Dec 22 2023