cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356109 Numbers k such that k^2 + {1,3,7,13} are prime.

Original entry on oeis.org

2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270, A113536.
Subsequence of A182238.

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A182261 Numbers n such that n^2 + {1,3,7} are semiprimes.

Original entry on oeis.org

44, 46, 80, 88, 102, 104, 108, 226, 234, 238, 246, 272, 290, 308, 310, 328, 334, 358, 370, 426, 456, 480, 514, 526, 530, 586, 588, 614, 720, 766, 790, 842, 846, 848, 872, 880, 884, 896, 898, 900, 934, 940, 974, 980, 1040, 1076, 1078, 1088, 1110, 1160, 1208
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2012

Keywords

Comments

This is to A182238 as A001358 semiprimes are to A000040 primes.

Examples

			44 is in the sequence because (44^2) + 1 = 1937 = 13 * 149, (44^2) + 3 = 1939 = 7 * 277, and  (442) + 7 = 1943 = 29 * 67.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..1225] | forall{n^2+i: i in [1,3,7] | IsSemiprime(n^2+i)}]; // Bruno Berselli, Apr 22 2012
  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+a(n-1) while map(x-> not isprime(k^2+x) and
              add(i[2], i=ifactors(k^2+x)[2])=2, [1, 3, 7])<>[true$3]
          do od; k
        end: a(0):=0:
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 22 2012
  • Mathematica
    okQ[n_] := AllTrue[n^2 + {1, 3, 7}, PrimeOmega[#] == 2&];
    Select[Range[2000], okQ] (* Jean-François Alcover, Jun 01 2022 *)

Formula

{ n : {n^2+1, n^2+3, n^2+7} in A001358 }.

A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.

Original entry on oeis.org

4, 10, 14290, 43054, 109456, 315410, 352600, 483494, 566296, 685114, 927070, 1106116, 1248796, 1501174, 1997986, 2399204, 2501404, 2553100, 2726840, 2874680, 3291760, 4129394, 4473766, 4794520, 4901144, 6350306, 7444070, 7753456, 7892504, 8009536, 8069540
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A356175 Numbers k such that k^2 + {1,3,7,13,163} are prime.

Original entry on oeis.org

2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 28 2022

Keywords

Comments

For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.

Examples

			2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 28 2022
  • Mathematica
    Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok
    
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022
Showing 1-4 of 4 results.