cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A022009 Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20).

Original entry on oeis.org

11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211, 187029371, 190514321, 198453371
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015
Also the terms k of A276848 for which k == 1 (mod 10), see the comment in A276848 and A276826. All terms are obviously also congruent to 11 (modulo 30). - Vladimir Shevelev, Sep 21 2016
See A343637 for the least prime septuplets > 10^n, n >= 0. - M. F. Hasler, Aug 04 2021

Crossrefs

Cf. A022010 (septuplets of the second type), A182387, A276826, A276848, A343637 (septuplet following 10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [2,6,8,12,18,20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10400000]],7,1],Differences[#] == {2,4,2,4,6,2}&]][[1]] (* Harvey P. Dale, Jul 13 2014 *)
    Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
       is(n)=if(n%30!=11 || !isprime(n) || !isprime(n+2), return(0)); my(p=n, q=n+2, k=2, f); while(p!=q && q-p<7, f=if(isprime(k++), nextprime, nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 30 2016
    
  • PARI
    select( {is_A022009(n)=n%210==11&&!foreach([20,18,12,8,6,2,0],d,isprime(n+d)||return)}, [11+k*210|k<-[0..10^5]]) \\ M. F. Hasler, Aug 04 2021
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,6,8,12,18,20); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A182387(n) + 11. - Hugo Pfoertner, Nov 18 2022

A182393 Numbers n such that 210*n + {11,13,17,19,23,29,31,37} are 8 consecutive primes.

Original entry on oeis.org

0, 75048, 122183, 445838, 868588, 1078331, 3152249, 4337790, 4962337, 5101537, 5572485, 6638215, 6948906, 8155956, 8298280, 9217084, 9752564, 11416369, 13331645, 13539754, 17782872, 19480161, 25473918, 25614474, 26299945, 27593165, 28335777, 28906807, 29231650
Offset: 1

Views

Author

Zak Seidov, Apr 27 2012

Keywords

Comments

Subsequence of A182387: a(2) = 75048 = A182387(5) = A182282(7), a(3) = 122183 = A182387(8) = A182282(29).

Crossrefs

Formula

a(n) = (A022011(n) - 11)/210. - Hugo Pfoertner, Nov 18 2022

A182450 Numbers n such that 210*n + {11,13,17,19,23,29,31,37,41} are 9 consecutive primes.

Original entry on oeis.org

0, 868588, 1078331, 4337790, 4962337, 6948906, 13539754, 30448177, 32218557, 39275297, 41670729, 52746284, 61193646, 81620584, 108499172, 118175956, 157531734, 198162240, 206181306, 208637331, 252388467, 258429278, 273526639, 305726202, 316425865, 383749862
Offset: 1

Views

Author

Zak Seidov, Apr 29 2012

Keywords

Comments

Subsequence of A182393: a(2)=868588=A182393(5), a(3)=1078331=A182387(6).

Crossrefs

A357889 a(n) = (A022010(n) - 179)/210.

Original entry on oeis.org

26, 422, 1355, 2983, 4074, 5460, 31242, 35906, 40825, 84968, 90902, 114293, 204675, 207304, 329316, 353648, 377182, 382985, 400497, 418993, 590790, 611757, 686734, 748244, 993947, 1038255, 1181931, 1246060, 1310026, 1347976, 1354707, 1440679, 1477788, 1559980, 1720425, 1915719, 1989590
Offset: 1

Views

Author

Hugo Pfoertner, Nov 18 2022

Keywords

Comments

Linear conversion of the initial members of prime septuplets of second type.
Numbers k such that 210*k+179, 210*k+181, 210*k+187, 210*k+191, 210*k+193, 210*k+197, and 210*k+199 are all primes. - Jianing Song, Nov 18 2022

Crossrefs

Cf. A022009, A022010, A182387 (similar for prime septuplets of first type).
A357890 is a subsequence.
Showing 1-4 of 4 results.