A182485
Number of partitions of n into exactly k different parts with distinct multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 2, 3, 0, 4, 3, 0, 2, 8, 0, 4, 9, 0, 3, 12, 0, 4, 16, 1, 0, 2, 22, 4, 0, 6, 20, 5, 0, 2, 31, 12, 0, 4, 35, 16, 0, 4, 34, 24, 0, 5, 44, 33, 0, 2, 51, 52, 0, 6, 53, 57, 0, 2, 62, 89, 0, 6, 65, 100, 1, 0, 4, 68, 131, 5, 0, 4, 87
Offset: 0
T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,1], [2].
T(4,1) = 3: [1,1,1,1], [2,2], [4].
T(4,2) = 1: [2,1,1]; part 2 occurs once and part 1 occurs twice.
T(5,2) = 3: [2,1,1,1], [2,2,1], [3,1,1].
T(7,2) = 8: [2,1,1,1,1,1], [2,2,1,1,1], [2,2,2,1], [3,1,1,1,1], [3,2,2], [3,3,1], [4,1,1,1], [5,1,1].
T(10,1) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
T(10,3) = 1: [3,2,2,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 1;
0, 2, 3;
0, 4, 3;
0, 2, 8;
0, 4, 9;
0, 3, 12;
0, 4, 16, 1;
First row with length (t+1):
A000292(t).
Cf.
A242896 (the same for compositions):
-
b:= proc(n, i, t, s) option remember;
`if`(nops(s)>t, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t, s)+
add(`if`(j in s, 0, b(n-i*j, i-1, t, s union {j})), j=1..n/i))))
end:
g:= proc(n) local i; for i while i*(i+1)*(i+2)/6<=n do od; i-1 end:
T:= n-> seq(b(n, n, k, {}) -b(n, n, k-1, {}), k=0..g(n)):
seq(T(n), n=0..30);
-
b[n_, i_, t_, s_] := b[n, i, t, s] = If[Length[s] > t, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, t, s] + Sum[If[MemberQ[s, j], 0, b[n-i*j, i-1, t, s ~Union~ {j}]], {j, 1, n/i}]]]]; g[n_] := Module[{i}, For[ i = 1, i*(i+1)*(i+2)/6 <= n , i++]; i-1 ]; t[n_] := Table [b[n, n, k, {}] - b[n, n, k-1, {}], {k, 0, g[n]}]; Table [t[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)
A242900
Number of compositions of n into exactly two different parts with distinct multiplicities.
Original entry on oeis.org
3, 10, 12, 38, 56, 79, 152, 251, 284, 594, 920, 1108, 2136, 3402, 4407, 8350, 12863, 17328, 33218, 52527, 70074, 133247, 214551, 294299, 547360, 883572, 1234509, 2284840, 3667144, 5219161, 9551081, 15386201, 22079741, 40061664, 64666975, 93985744, 168363731
Offset: 4
a(4) = 3: [2,1,1], [1,2,1], [1,1,2].
a(5) = 10: [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [2,2,1], [2,1,2], [1,2,2], [3,1,1], [1,3,1], [1,1,3].
Cf.
A182473 (the same for partitions),
A131661 (multiplicities may be equal).
-
with(numtheory):
a:= n-> add(add(add(`if`(dm, binomial((n-p*m)
/d+m, m), 0), d=divisors(n-p*m)), m=1..n/p), p=2..n-1):
seq(a(n), n=4..60);
-
div[0] = {}; div[n_] := Divisors[n]; a[n_] := Sum[Sum[Sum[If[dJean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A367588
Number of integer partitions of n with exactly two distinct parts, both appearing with the same multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 5, 9, 6, 9, 10, 11, 8, 15, 9, 16, 14, 15, 11, 23, 14, 18, 18, 23, 14, 30, 15, 26, 22, 24, 22, 38, 18, 27, 26, 38, 20, 42, 21, 37, 36, 33, 23, 53, 27, 42, 34, 44, 26, 54, 34, 53, 38, 42, 29, 74, 30, 45, 49, 57, 40, 66, 33, 58, 46
Offset: 0
The a(3) = 1 through a(12) = 9 partitions (A = 10, B = 11):
(21) (31) (32) (42) (43) (53) (54) (64) (65) (75)
(41) (51) (52) (62) (63) (73) (74) (84)
(2211) (61) (71) (72) (82) (83) (93)
(3311) (81) (91) (92) (A2)
(222111) (3322) (A1) (B1)
(4411) (4422)
(5511)
(333111)
(22221111)
These partitions have ranks
A268390.
A072233 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
-
Table[Sum[Floor[(d-1)/2],{d,Divisors[n]}],{n,30}]
A367589
Numbers with exactly two distinct prime factors, both appearing with different exponents.
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 242, 244
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
54: {1,2,2,2}
56: {1,1,1,4}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
These partitions are counted by
A182473.
A098859 counts partitions with distinct multiplicities, ranks
A130091.
A116608 counts partitions by number of distinct parts.
A367590
Numbers with exactly two distinct prime factors, both appearing with the same exponent.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1
The terms together with their prime indices begin:
6: {1,2} 57: {2,8} 106: {1,16}
10: {1,3} 58: {1,10} 111: {2,12}
14: {1,4} 62: {1,11} 115: {3,9}
15: {2,3} 65: {3,6} 118: {1,17}
21: {2,4} 69: {2,9} 119: {4,7}
22: {1,5} 74: {1,12} 122: {1,18}
26: {1,6} 77: {4,5} 123: {2,13}
33: {2,5} 82: {1,13} 129: {2,14}
34: {1,7} 85: {3,7} 133: {4,8}
35: {3,4} 86: {1,14} 134: {1,19}
36: {1,1,2,2} 87: {2,10} 141: {2,15}
38: {1,8} 91: {4,6} 142: {1,20}
39: {2,6} 93: {2,11} 143: {5,6}
46: {1,9} 94: {1,15} 145: {3,10}
51: {2,7} 95: {3,8} 146: {1,21}
55: {3,5} 100: {1,1,3,3} 155: {3,11}
Partitions of this type are counted by
A367588.
A116608 counts partitions by number of distinct parts.
-
Select[Range[100], SameQ@@Last/@If[#==1, {}, FactorInteger[#]]&&PrimeNu[#]==2&]
Select[Range[200],PrimeNu[#]==2&&Length[Union[FactorInteger[#][[;;,2]]]]==1&] (* Harvey P. Dale, Aug 04 2025 *)
Showing 1-5 of 5 results.
Comments