cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182579 Triangle read by rows: T(0,0) = 1, for n>0: T(n,n) = 2 and for k<=floor(n/2): T(n,2*k) = n/(n-k) * binomial(n-k,k), T(n,2*k+1) = (n-1)/(n-1-k) * binomial(n-1-k,k).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 9, 5, 2, 1, 1, 7, 6, 14, 9, 7, 2, 1, 1, 8, 7, 20, 14, 16, 7, 2, 1, 1, 9, 8, 27, 20, 30, 16, 9, 2, 1, 1, 10, 9, 35, 27, 50, 30, 25, 9, 2, 1, 1, 11, 10, 44, 35, 77, 50, 55, 25, 11, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 06 2012

Keywords

Comments

A000204(n+1) = sum of n-th row, Lucas numbers;
A000204(n+3) = alternating row sum of n-th row;
A182584(n) = T(2*n,n), central terms;
A000012(n) = T(n,0), left edge;
A040000(n) = T(n,n), right edge;
A054977(n-1) = T(n,1) for n > 0;
A109613(n-1) = T(n,n-1) for n > 0;
A008794(n) = T(n,n-2) for n > 1.

Examples

			Starting with 2nd row = [1 2] the rows of the triangle are defined recursively without computing explicitely binomial coefficients; demonstrated for row 8, (see also Haskell program):
   (0) 1  1  7  6 14  9  7  2      [A]  row 7 prepended by 0
    1  1  7  6 14  9  7  2 (0)     [B]  row 7, 0 appended
    1  0  1  0  1  0  1  0  1      [C]  1 and 0 alternating
    1  0  7  0 14  0  7  0  0      [D]  = [B] multiplied by [C]
    1  1  8  7 20 14 16  7  2      [E]  = [D] added to [A] = row 8.
The triangle begins:                 | A000204
              1                      |       1
             1  2                    |       3
            1  1  2                  |       4
           1  1  3  2                |       7
          1  1  4  3  2              |      11
         1  1  5  4  5  2            |      18
        1  1  6  5  9  5  2          |      29
       1  1  7  6 14  9  7  2        |      47
      1  1  8  7 20 14 16  7  2      |      76
     1  1  9  8 27 20 30 16  9  2    |     123
    1  1 10  9 35 27 50 30 25  9  2  |     199 .
		

Crossrefs

Programs

  • Haskell
    a182579 n k = a182579_tabl !! n !! k
    a182579_row n = a182579_tabl !! n
    a182579_tabl = [1] : iterate (\row ->
      zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1,2]
  • Mathematica
    T[_, 0] = 1;
    T[n_, n_] /; n > 0 = 2;
    T[_, 1] = 1;
    T[n_, k_] := T[n, k] = Which[
         OddQ[k],  T[n - 1, k - 1],
         EvenQ[k], T[n - 1, k - 1] + T[n - 1, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)

Formula

T(n+1,2*k+1) = T(n,2*k), T(n+1,2*k) = T(n,2*k-1) + T(n,2*k).

A052227 a(n) = (4*n+1)*binomial(3*n,n)/(2*n+1).

Original entry on oeis.org

1, 5, 27, 156, 935, 5733, 35700, 224808, 1427679, 9126975, 58659315, 378658800, 2453288292, 15944020316, 103897691640, 678610095504, 4441369072335, 29120107628115, 191233066114545, 1257635016353100
Offset: 0

Views

Author

Barry E. Williams, Jan 29 2000

Keywords

Comments

T(2n,n) for A111125. - Paul Barry, Apr 19 2007
a(n) = A182584(2*n+1). - Reinhard Zumkeller, May 06 2012

Crossrefs

Programs

  • Haskell
    a052227 n = (a016813 n) * (a005809 n) `div` (a005408 n)
    -- Reinhard Zumkeller, May 06 2012
    
  • Magma
    [(4*n+1)*Binomial(3*n,n)/(2*n+1) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
    
  • Mathematica
    Table[(4n + 1)Binomial[3n, n]/(2n + 1), {n, 0, 30}] (* Harvey P. Dale, Jan 31 2011 *)
  • Maxima
    makelist(binomial(3*n,n)*(4*n+1)/(2*n+1),n,0,100); /* Emanuele Munarini, Jun 06 2011 */
    
  • PARI
    {a(n)=binomial(3*n+1, n)+binomial(3*n, n-1)}  /* Paul D. Hanna, Jul 22 2013 */

Formula

G.f.: 4*x*F(4/3,5/3;5/2;27*x/4) + 2*sin(1/3*arcsin((3*sqrt(3*x))/2))/sqrt(3*x), where F(a;b;z) is a hypergeometric series. - Emanuele Munarini, Jun 06 2011
G.f.: (g+1)/((3*g-1)*(g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Conjecture: 8*n*(2*n+1)*a(n) +6*(-8*n^2-25*n+13)*a(n-1) -45*(3*n-4)*(3*n-5)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
a(n) = binomial(3*n+1, n) + binomial(3*n, n-1) for n>=0. - Paul D. Hanna, Jul 22 2013
G.f.: G(x)*(2*G(x) - 1) / (3 - 2*G(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. - Paul D. Hanna, Jul 22 2013
a(n) is the coefficient of [x^n] in (1+x)/(1-x)^(2n+2) and forms the main diagonal in the following table of coefficients:
(1+x)/(1-x)^2: [1, 3, 5, 7, 9, 11, 13, 15, 17, ...];
(1+x)/(1-x)^4: [1, 5, 14, 30, 55, 91, 140, 204, 285, ...];
(1+x)/(1-x)^6: [1, 7, 27, 77, 182, 378, 714, 1254, ...];
(1+x)/(1-x)^8: [1, 9, 44, 156, 450, 1122, 2508, 5148, ...];
(1+x)/(1-x)^10:[1, 11, 65, 275, 935, 2717, 7007, 16445, ...];
(1+x)/(1-x)^12:[1, 13, 90, 442, 1729, 5733, 16744, 44200, ...];
(1+x)/(1-x)^14:[1, 15, 119, 665, 2940, 10948, 35700, 104652, ...];
(1+x)/(1-x)^16:[1, 17, 152, 952, 4692, 19380, 69768, 224808, ...]; ... - Paul D. Hanna, Jul 22 2013

Extensions

More terms from Harvey P. Dale, Jan 31 2011
Showing 1-2 of 2 results.