cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A105868 Triangle read by rows, T(n,k) = C(n,k)*C(k,n-k).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 6, 1, 0, 0, 6, 12, 1, 0, 0, 0, 30, 20, 1, 0, 0, 0, 20, 90, 30, 1, 0, 0, 0, 0, 140, 210, 42, 1, 0, 0, 0, 0, 70, 560, 420, 56, 1, 0, 0, 0, 0, 0, 630, 1680, 756, 72, 1, 0, 0, 0, 0, 0, 252, 3150, 4200, 1260, 90, 1, 0, 0, 0, 0, 0, 0, 2772, 11550, 9240, 1980, 110, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Apr 23 2005

Keywords

Comments

Row sums are the central trinomial coefficients A002426.
Product of A007318 and this sequence is A008459.
Coefficient array for polynomials P(n,x) = x^n*F(1/2-n/2,-n/2;1;4/x). - Paul Barry, Oct 04 2008
Column sums give A001850. It appears that the sums along the antidiagonals of the triangle produce A182883. - Peter Bala, Mar 06 2013

Examples

			Triangle begins
  1;
  0,  1;
  0,  2,  1;
  0,  0,  6,  1;
  0,  0,  6, 12,  1;
  0,  0,  0, 30, 20, 1;
		

Crossrefs

Cf. A063007. A001850 (column sums), A182883.

Programs

  • Magma
    [[Binomial(n,k)*Binomial(k,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 14 2015
  • Maple
    gf := 1/((1 - x*y)^2 - 4*y^2*x)^(1/2):
    yser := series(gf, y, 12): ycoeff := n -> coeff(yser, y, n):
    row := n -> seq(coeff(expand(ycoeff(n)), x, k), k=0..n):
    seq(row(n), n=0..7); # Peter Luschny, Oct 28 2020
  • Mathematica
    Flatten[Table[Binomial[n,k]Binomial[k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Nov 12 2014 *)

Formula

G.f.: 1/(sqrt((1-x*y)^2-4*x^2*y)). - Vladimir Kruchinin, Oct 28 2020

A299500 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^(n-k)*binomial(n,k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 7, 3, 1, 5, 16, 15, 4, 1, 8, 38, 46, 26, 5, 1, 13, 82, 141, 100, 40, 6, 1, 21, 173, 381, 375, 185, 57, 7, 1, 34, 352, 983, 1216, 820, 308, 77, 8, 1, 55, 701, 2400, 3704, 3101, 1575, 476, 100, 9, 1, 89, 1368, 5646, 10536, 10885, 6804, 2758, 696, 126, 10, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2018

Keywords

Examples

			The partial polynomials p_{n,k}(x) start:
[0] 1
[1] x,   1
[2] x^2, 2*x+1,        1
[3] x^3, 3*x^2+4*x,    3*x+2,             1
[4] x^4, 4*x^3+9*x^2,  6*x^2+12*x+1,      4*x+3,         1
[5] x^5, 5*x^4+16*x^3, 10*x^3+36*x^2+9*x, 10*x^2+24*x+3, 5*x+4, 1
.
The polynomials P_{n}(x) start:
[0]  1
[1]  1 +    x
[2]  2 +  2*x +    x^2
[3]  3 +  7*x +  3*x^2 +    x^3
[4]  5 + 16*x + 15*x^2 +  4*x^3 +   x^4
[5]  8 + 38*x + 46*x^2 + 26*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0]  1
[1]  1,   1
[2]  2,   2,    1
[3]  3,   7,    3,    1
[4]  5,  16,   15,    4,    1
[5]  8,  38,   46,   26,    5,    1
[6] 13,  82,  141,  100,   40,    6,   1
[7] 21, 173,  381,  375,  185,   57,   7,   1
[8] 34, 352,  983, 1216,  820,  308,  77,   8, 1
[9] 55, 701, 2400, 3704, 3101, 1575, 476, 100, 9, 1'
.
The square array P_{n}(k) near k=0:
......  [k=-2] 1, -1,  2, -7,  17,  -44,  125,  -345,    958,   -2707, ...
A182883 [k=-1] 1,  0,  1, -2,   1,   -6,    7,   -12,     31,     -40, ...
A000045 [k=0]  1,  1,  2,  3,   5,    8,   13,    21,     34,      55, ...
A108626 [k=1]  1,  2,  5, 14,  41,  124,  383,  1200,   3799,   12122, ...
A299501 [k=2]  1,  3, 10, 37, 145,  588, 2437, 10251,  43582,  186785, ...
......  [k=3]  1,  4, 17, 78, 377, 1886, 9655, 50220, 264223, 1402108, ...
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    PrintPoly := p -> print(sort(expand(p),x,ascending)):
    T := (n,k) -> x^(n-k)*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:
    seq(CoeffList(p), p in P); # seq(PrintPoly(p), p in P);
    R := proc(n,k) option remember; # Recurrence
    if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+4*k+2][n+1] fi; ((2-n)*R(n-4,k)-
    (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:
    for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;

Formula

Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A299502(n).
P_{n}(-1) = A182883(n). P_{n}(0) = A000045(n+1).
P_{n}(1) = A108626(n). P_{n}(2) = A299501(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 - 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)-(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+4*k+2.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).

A383571 Expansion of 1/sqrt((1-x^3)^2 - 4*x^4).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 1, 6, 6, 1, 12, 30, 21, 20, 90, 141, 100, 210, 561, 672, 672, 1681, 3206, 3528, 5125, 11622, 17892, 21253, 38172, 74052, 102565, 141680, 268092, 454741, 622182, 979836, 1790361, 2784366, 3993132, 6741593, 11587758, 17380116, 26551097, 45489082, 74098518
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (4,0),(0,4),(3,3).
Diagonal of the rational function 1 / (1 - x^4 - y^4 - x^3*y^3).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(k,n-3*k).

A383572 Expansion of 1/sqrt((1-x^4)^2 - 4*x^5).

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 0, 0, 1, 6, 6, 0, 1, 12, 30, 20, 1, 20, 90, 140, 71, 30, 210, 560, 631, 294, 420, 1680, 3151, 2828, 1680, 4200, 11551, 16704, 13272, 12672, 34651, 72162, 86064, 69960, 102961, 252362, 423390, 446160, 429001, 805508, 1685970, 2393820, 2419561
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (5,0),(0,5),(4,4).
Diagonal of the rational function 1 / (1 - x^5 - y^5 - x^4*y^4).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(k,n-4*k).

A182882 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps of weight 1. L_n is the set of lattice paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1; an (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 6, 3, 0, 1, 6, 3, 12, 4, 0, 1, 7, 24, 6, 20, 5, 0, 1, 12, 34, 60, 10, 30, 6, 0, 1, 31, 60, 100, 120, 15, 42, 7, 0, 1, 40, 185, 180, 230, 210, 21, 56, 8, 0, 1, 91, 260, 645, 420, 455, 336, 28, 72, 9, 0, 1, 170, 636, 980, 1715, 840, 812, 504, 36, 90, 10, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Comments

Sum of entries in row n is A051286(n).
T(n,0)=A182883(n).
Sum(k*T(n,k), k=0..n)=A182884(n).

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them have exactly one h step.
Triangle starts:
1;
0,1;
1,0,1;
2,2,0,1;
1,6,3,0,1;
6,3,12,4,0,1
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    G:=1/sqrt(1-2*t*z-2*z^2+t^2*z^2+2*t*z^3+z^4-4*z^3): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) =1/sqrt(1-2tz-2z^2+t^2*z^2+2t*z^3+z^4-4z^3).

A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 11, 16, 9, 4, 1, 26, 44, 34, 14, 5, 1, 63, 122, 111, 60, 20, 6, 1, 153, 341, 351, 225, 95, 27, 7, 1, 376, 940, 1103, 796, 400, 140, 35, 8, 1, 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1, 2317, 7064, 10224, 9304, 5915, 2772, 994, 264, 54, 10, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2018

Keywords

Examples

			The partial polynomials p_{n,k}(x) start:
[0] 1
[1] 1, x
[2] 1, 2*x+ 1,    x^2
[3] 1, 3*x+ 4,  3*x^2+ 2*x,      x^3
[4] 1, 4*x+ 9,  6*x^2+12*x+1,  4*x^3+ 3*x^2,       x^4
[5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5
.
The polynomials P_{n}(x) start:
[0]   1
[1]   1 +    x
[2]   2 +  2*x +    x^2
[3]   5 +  5*x +  3*x^2 +    x^3
[4]  11 + 16*x +  9*x^2 +  4*x^3 +   x^4
[5]  26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0]   1
[1]   1,    1
[2]   2,    2,    1
[3]   5,    5,    3,    1
[4]  11,   16,    9,    4,    1
[5]  26,   44,   34,   14,    5,   1
[6]  63,  122,  111,   60,   20,   6,   1
[7] 153,  341,  351,  225,   95,  27,   7,  1
[8] 376,  940, 1103,  796,  400, 140,  35,  8, 1
[9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1
.
The square array P_{n}(k) near k=0:
......  [k=-2] 1, -1,  2, -1,  -1,   10,  -25,    51,    -68,     41, ...
A182883 [k=-1] 1,  0,  1,  2,   1,    6,    7,    12,     31,     40, ...
A051286 [k=0]  1,  1,  2,  5,  11,   26,   63,   153,    376,    931, ...
A108626 [k=1]  1,  2,  5, 14,  41,  124,  383,  1200,   3799,  12122, ...
A299443 [k=2]  1,  3, 10, 35, 127,  474, 1807,  6999,  27436, 108541, ...
......  [k=3]  1,  4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    PrintPoly := p -> print(sort(expand(p),x,ascending)):
    T := (n,k) -> x^k*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:
    seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);
    R := proc(n,k) option remember; # Recurrence
    if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4,k)+
    (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:
    for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;
  • Mathematica
    nmax = 10;
    p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];
    p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];
    Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A298611(n).
P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).
P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).
Showing 1-6 of 6 results.