A183010
a(n) = 24*n - 1.
Original entry on oeis.org
-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
Offset: 0
G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
- A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [hep-th], 2012-2014, see p. 46.
- H. Gupta, Congruent properties of sigma(n), Math. Student 13 (1945) 25-29.
- E. Larson and L. Rolen, Integrality properties of the CM-values of certain weak Maass forms, arXiv:1107.4114 [math.NT], 2011.
- K. Ono, Congruences for the Andrews spt-function, (see 2.1 Producing modular forms)
- W. Sierpinski, Elementary Theory of numbers, Monografie Mathematyczne, vol. 42 (1964) chapt 4, p. 168.
- Leo Tavares, Illustration: Star Pairs
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A188569
Degree of the n-th partition class polynomial Hpart_n(x).
Original entry on oeis.org
3, 5, 7, 8, 10, 10, 11, 13, 14, 15, 13, 14, 19, 18, 19, 17, 16, 21, 20, 25, 21, 18, 26, 21, 25, 22, 23, 30, 24, 31, 21, 22, 32, 30, 33, 21, 29, 31, 28, 36, 27, 30, 35, 36, 34, 23, 27, 41, 35, 38, 35, 26, 40, 36, 45, 34, 25, 44, 34, 39, 32, 37, 49, 38, 51, 33
Offset: 1
In the Bruinier-Ono paper, chapter 5 "Examples", the first "partition polynomial" is H_1(x) = x^3 - 23*x^2 + (3592/23)*x - 419, which has degree 3, so a(1) = 3.
This sequence arises from the original definition of
A183054 (Jul 14 2011) which was changed.
A222031
Irregular triangle read by rows in which row n gives numerators of the coefficients of the partition class polynomial Hpart_n(x), n >= 1.
Original entry on oeis.org
1, -23, 3592, -419, 1, -94, 169659, -65838, 1092873176, 145023, 1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293, 1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631
Offset: 1
For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the numerators of the coefficients are 1, -23, 3592, -419.
Triangle begins:
1, -23, 3592, -419;
1, -94, 169659, -65838, 1092873176, 145023;
1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293;
1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631;
...
A222032
Irregular triangle read by rows in which row n gives denominators of the coefficients of the partition class polynomial Hpart_n(x), n >= 1.
Original entry on oeis.org
1, 1, 23, 1, 1, 1, 47, 1, 2209, 47, 1, 1, 71, 1, 5041, 71, 357911, 5041, 1, 1, 95, 1, 9025, 19, 857375, 361, 11875, 1, 1, 119, 1, 2023, 1, 240737, 14161, 200533921, 1685159, 4857223, 1, 1, 143, 1, 1573, 143, 2924207, 20449, 418161601, 2924207, 27217619
Offset: 1
For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the denominators of the coefficients are 1, 1, 23, 1.
Triangle begins:
1, 1, 23, 1;
1, 1, 47, 1, 2209, 47;
1, 1, 71, 1, 5041, 71, 357911, 5041;
1, 1, 95, 1, 9025, 19, 857375, 361, 11875;
1, 1, 119, 1, 2023, 1, 240737, 14161, 200533921, 1685159, 4857223;
1, 1, 143, 1, 1573, 143, 2924207, 20449, 418161601, 2924207, 27217619;
1, 1, 167, 1, 27889, 167, 4657463, 27889, 777796321, 4657463, 129891985607, 777796321;
Showing 1-4 of 4 results.
Comments