cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A184730 G.f.: exp( Sum_{n>=1} A184731(n)*x^n/n ) where A184731(n) = Sum_{k=0..n} C(n,k)^(k+1).

Original entry on oeis.org

1, 2, 5, 20, 159, 3152, 168036, 20428850, 5796209814, 4052041564524, 6210335115944263, 21470958882165989854, 183818137919395949397148, 3517964195874870876682733562, 147909303669340763210833833705995, 15391220509661795085065182391703575606
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2011

Keywords

Comments

Note that the following g.f. does NOT yield an integer series:
. exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^k] * x^n/n ).

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 159*x^4 + 3152*x^5 +...
log(A(x)) = 2*x + 6*x^2/2 + 38*x^3/3 + 490*x^4/4 + 14152*x^5/5 + 969444*x^6/6 +...+ A184731(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^(k+1))*x^m/m)+x*O(x^n)), n)}

Formula

Equals row sums of triangle A228899.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A184731(k)*a(n-k) for n > 0. - Seiichi Manyama, Jan 10 2019

A220359 Decimal expansion of the root of the equation (1-r)^(2*r-1) = r^(2*r).

Original entry on oeis.org

7, 0, 3, 5, 0, 6, 0, 7, 6, 4, 3, 0, 6, 6, 2, 4, 3, 0, 9, 6, 9, 2, 9, 6, 6, 1, 6, 2, 1, 7, 7, 7, 0, 9, 5, 2, 1, 3, 2, 4, 6, 8, 4, 5, 7, 4, 2, 4, 2, 8, 1, 5, 5, 5, 5, 8, 6, 2, 1, 5, 7, 1, 6, 5, 1, 0, 5, 1, 2, 3, 0, 6, 0, 0, 3, 9, 9, 4, 0, 1, 4, 4, 9, 5, 2, 5, 4, 5, 6, 8, 0, 4, 6, 0, 5, 7, 3, 1, 5, 1, 9, 8, 5, 4, 4, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 12 2012

Keywords

Comments

Constant is associated with A167008, A219206 and A219207.

Examples

			0.70350607643066243...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    v:= convert(fsolve( (1-r)^(2*r-1) = r^(2*r), r=1/2), string):
    seq(parse(v[n+2]), n=0..120);  # Alois P. Heinz, Dec 12 2012
  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2}, WorkingPrecision->250], 10, 200][[1]]
  • PARI
    solve(x=.7,1,(1-x)^(2*x-1) - x^(2*x)) \\ Charles R Greathouse IV, Apr 25 2016

A167008 a(n) = Sum_{k=0..n} C(n,k)^k.

Original entry on oeis.org

1, 2, 4, 14, 106, 1732, 66634, 5745700, 1058905642, 461715853196, 461918527950694, 989913403174541980, 5009399946447021173140, 60070720443204091719085184, 1548154498059133199618813305334, 92346622775540905956057053976278584
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Row sums of A219206.

Crossrefs

Programs

  • Haskell
    a167008 = sum . a219206_row  -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    [(&+[Binomial(n,j)^j: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]^k, {k,0,n}], {n,20}]}]
    (* Program for numerical value of the limit a(n)^(1/n^2) *) (1-r)^(-r/2)/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2},WorkingPrecision->100] (* Vaclav Kotesovec, Dec 12 2012 *)
    Total/@Table[Binomial[n,k]^k,{n,0,20},{k,0,n}] (* Harvey P. Dale, Oct 19 2021 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^k)
    
  • SageMath
    [sum(binomial(n,j)^j for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Limit_{n->oo} a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Dec 12 2012

A206154 a(n) = Sum_{k=0..n} binomial(n,k)^(k+2).

Original entry on oeis.org

1, 2, 10, 110, 2386, 125752, 14921404, 3697835668, 2223231412546, 3088517564289836, 9040739066816429380, 63462297965044771663708, 1064766030857977088480630740, 37863276208844960432962611293828, 3144384748384240804260912067907833280
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206153.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 110*x^3/3 + 2386*x^4/4 + 125752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 48*x^3 + 693*x^4 + 26632*x^5 + 2542514*x^6 +...
Illustration of initial terms:
a(1) = 1^2 + 1^3 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^2 + 3^3 + 3^4 + 1^5 = 110;
a(4) = 1^2 + 4^3 + 6^4 + 4^5 + 1^6 = 2386;
a(5) = 1^2 + 5^3 + 10^4 + 10^5 + 5^6 + 1^7 = 125752; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(k+2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 16 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(k+2))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014

A206156 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k).

Original entry on oeis.org

1, 2, 6, 92, 5410, 1400652, 2687407464, 18947436116184, 536104663173431874, 130559883231879141946580, 136031455187223511721647272376, 483565526783420050082035900177878504, 14487924180895151383693101563813954330590756
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206155.

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 92*x^3/3 + 5410*x^4/4 + 1400652*x^5/5 +...
where exponentiation yields A206155:
exp(L(x)) = 1 + 2*x + 5*x^2 + 38*x^3 + 1425*x^4 + 283002*x^5 + 448468978*x^6 +...
Illustration of initial terms:
a(1) = 1^0 + 1^2 = 2;
a(2) = 1^0 + 2^2 + 1^4 = 6;
a(3) = 1^0 + 3^2 + 3^4 + 1^6 = 92;
a(4) = 1^0 + 4^2 + 6^4 + 4^6 + 1^8 = 5410;
a(5) = 1^0 + 5^2 + 10^4 + 10^6 + 5^8 + 1^10 = 1400652; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(2*k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(2*k))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014

A206158 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k+1).

Original entry on oeis.org

1, 2, 10, 272, 24226, 12053252, 40086916024, 429254371605824, 23527609330364490754, 10714627376371224032350052, 16964729291782419425708732425300, 109783535843179466164398767001178968704, 6782057095273243388704415924996348722446049600
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206157.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 272*x^3/3 + 24226*x^4/4 + 12053252*x^5/5 +...
where exponentiation yields A206157:
exp(L(x)) = 1 + 2*x + 7*x^2 + 102*x^3 + 6261*x^4 + 2423430*x^5 + 6686021554*x^6 +...
Illustration of initial terms:
a(1) = 1^1 + 1^3 = 2;
a(2) = 1^1 + 2^3 + 1^5 = 10;
a(3) = 1^1 + 3^3 + 3^5 + 1^7 = 272;
a(4) = 1^1 + 4^3 + 6^5 + 4^7 + 1^9 = 24226;
a(5) = 1^1 + 5^3 + 10^5 + 10^7 + 5^9 + 1^11 = 12053252; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(2*k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(2*k+1))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014

A219207 Triangle, read by rows, where T(n,k) = binomial(n,k)^(k+1) for n>=0, k=0..n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 27, 1, 1, 16, 216, 256, 1, 1, 25, 1000, 10000, 3125, 1, 1, 36, 3375, 160000, 759375, 46656, 1, 1, 49, 9261, 1500625, 52521875, 85766121, 823543, 1, 1, 64, 21952, 9834496, 1680700000, 30840979456, 13492928512, 16777216, 1, 1, 81, 46656
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2012

Keywords

Comments

Maximal term in row n is asymptotically in position k = r*n, where r = A220359 = 0.70350607643... is a root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Nov 15 2012

Examples

			Triangle of coefficients C(n,k)^(k+1) begins:
1;
1, 1;
1, 4, 1;
1, 9, 27, 1;
1, 16, 216, 256, 1;
1, 25, 1000, 10000, 3125, 1;
1, 36, 3375, 160000, 759375, 46656, 1;
1, 49, 9261, 1500625, 52521875, 85766121, 823543, 1;
1, 64, 21952, 9834496, 1680700000, 30840979456, 13492928512, 16777216, 1; ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
3,-4,1;
-73,99,-27,1;
18055,-24496,6696,-256,1;
-55694851,75563975,-20656000,790000,-3125,1; - _R. J. Mathar_, Mar 22 2013
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n,k]^(k+1),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 15 2016 *)
  • PARI
    {T(n,k)=binomial(n,k)^(k+1)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Row sums equal A184731.
Showing 1-7 of 7 results.