cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.

Original entry on oeis.org

0, 0, 1, 91, 966, 5082, 18447, 53053, 129948, 282948, 562989, 1043119, 1824130, 3040830, 4868955, 7532721, 11313016, 16556232, 23683737, 33201987, 45713278, 61927138, 82672359, 108909669, 141745044, 182443660
Offset: 0

Views

Author

Wesley Transue, Jan 21 2012

Keywords

Comments

Third column (k=2) of A008958.

Crossrefs

Third column (k=2) of A008958 Triangle of central factorial numbers.
Cf. A103220.

Programs

  • Magma
    [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* G. C. Greubel, Jun 28 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,1,91,966,5082,18447},30] (* Harvey P. Dale, Oct 10 2021 *)
  • PARI
    a(n) = binomial(2*n+1,5)*(10*n-17)/3  \\ Michel Marcus, Jun 18 2013
    

Formula

a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
a(n) = binomial(2*n+1,5)*(10*n-17)/3.
From G. C. Greubel, Jun 28 2017: (Start)
G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Apr 23 2021
a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - Peter Bala, Sep 03 2023