cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000727 Expansion of Product_{k >= 1} (1 - x^k)^4.

Original entry on oeis.org

1, -4, 2, 8, -5, -4, -10, 8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 26, 0, 2, -28, 0, -16, 16, -28, -22, 0, 14, 16, 0, 40, 0, -28, 26, 32, -17, 0, -32, -16, -22, 0, -10, 32, -34, -8, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, -56, 2, -28, 0, 0, -10, 20, 64, -40, -20, 44
Offset: 0

Views

Author

Keywords

Comments

Number 51 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan (see the link, pp. 155 and 157 Nr. 23.) conjectured the expansion coefficients called Psi_4(n) of eta^4(6*z) in powers of q = exp(2*Pi*i*z), Im(z) > 0, where i is the imaginary unit. In the Finch link on p. 5, multiplicity is used and Psi_4(p^r), called f(p^r), is given (see also b(p^e) formula given by Michael Somos, Aug 23 2006). Mordell proved this conjecture on pp. 121-122 based on Klein-Fricke, Theorie der elliptischen Modulfunktionen, 1892, Band II, p. 374. The product formula for the Dirichlet series, Mordell, eq. (7) for a=2,is used to find Psi_4(n), called f_2(n), from f_2(p) for primes p. The primes p = 2 and 3 do not appear in the product. - Wolfdieter Lang, May 03 2016

Examples

			G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 + 9*x^8 + ...
G.f. = q - 4*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
		

References

  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    L000727List(len) = DedekindEta(len, 4)
    L000727List(82) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, 0, 1]), 493); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 493); A[2] - 4*A[8]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(36), 2), 493)[1]; /* Michael Somos, May 17 2015 */
    
  • Magma
    Coefficients(&*[(1-x^m)^4:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Mar 10 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -4): seq(a(n), n=0..81); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[-4&]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    nmax = 80; CoefficientList[Series[Sum[Sum[(-1)^(k+m) * (2*k+1) * q^(k*(k+1)/2 + m*(3*m-1)/2), {k, 0, nmax}], {m, -nmax, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Dec 06 2015 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-1)^(e/2) * p^(e/2)), for( y=1, sqrtint(p\3), if( issquare( p - 3*y^2, &x), break)); a0=1; if( x%3!=1, x=-x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0=a1; a1=y); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff(eta(x + x * O(x^n))^4, n))};
    
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, 1], 1), 6*n + 1))}; /* Michael Somos, Jul 01 2004 */
    
  • Sage
    ModularForms( Gamma0(36), 2, prec=493).0; # Michael Somos, Jun 12 2014
    

Formula

Euler transform of period 1 sequence [-4, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(q) = q * A(q^3)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w*u^2 - v^3 + 16 * u*w^2. - Michael Somos, Apr 02 2005
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2*x where p = x^2 + 3*y^2 == 1 (mod 6) and x == 1 (mod 3). - Michael Somos, Aug 23 2006
Coefficients of L-series for elliptic curve "36a1": y^2 = x^3 + 1. - Michael Somos, Jul 01 2004
a(n) = (-1)^n * A187076(n). a(2*n + 1) = -4 * A187150(n). a(25*n + 9) = a(25*n + 14) = a(25*n + 19) = a(25*n + 24) = 0. a(25*n + 4) = -5 * a(n). Convolution inverse of A023003. Convolution square of A002107. Convolution square is A000731.
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 5 (mod 6). Then a( M^2*n + (M^2 - 1)/6 ) = (-1)^k*M*a(n). See Cooper et al., equation 4. - Peter Bala, Dec 01 2020
a(n) = b(6*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(e+1) - ((x-sqrt(-3)*y)/2)^(e+1))/x if p == 1 (mod 3) where p = x^2 + 3*y^2 and x == 1 (mod 3). - Jianing Song, Mar 19 2022

A187076 Coefficients of L-series for elliptic curve "144a1": y^2 = x^3 - 1.

Original entry on oeis.org

1, 4, 2, -8, -5, 4, -10, -8, 9, 0, 14, 16, -10, 4, 0, 8, 14, -20, 2, 0, -11, -20, -32, 16, 0, 4, 14, -8, -9, -20, 26, 0, 2, 28, 0, 16, 16, 28, -22, 0, 14, -16, 0, -40, 0, 28, 26, -32, -17, 0, -32, 16, -22, 0, -10, -32, -34, 8, 14, 0, 45, 4, 38, -8, 0, 0, -34
Offset: 0

Views

Author

Michael Somos, Mar 05 2011

Keywords

Comments

Number 67 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 2*x^2 - 8*x^3 - 5*x^4 + 4*x^5 - 10*x^6 - 8*x^7 + 9*x^8 + ...
G.f. = q + 4*q^7 + 2*q^13 - 8*q^19 - 5*q^25 + 4*q^31 - 10*q^37 - 8*q^43 + 9*q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(144), 2), 398); A[1] + 4*A[7] + 2*A[11] - 8*A[13]; /* Michael Somos, Jan 01 2017 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^4, {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, -1], 1), 6*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)))^4, n))};
    
  • PARI
    {a(n) = my(m, A, p, e, x, y, a0, a1); if( n<0, 0, m = 6*n + 1; A = factor(m); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-p)^(e/2)), for( y=1, sqrtint(p\3), if( issquare(p - 3*y^2, &x), break)); a0 = 1; if( x%6>3, x = -x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0 = a1; a1 = y); a1)))};
    

Formula

Expansion of f(x)^4 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/6) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^4 in powers of q.
Euler transform of period 4 sequence [4, -8, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = f(t) where q = exp(2 Pi i t).
a(n) = b(6*n + 1) and b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2 * x where p = x^2 + 3 * y^2 == 1 (mod 6) and x == 4, 5 (mod 6).
G.f.: Product_{k>0} (1 - (-x)^k)^4. a(n) = (-1)^n * A000727(n).
Convolution cube is A209676. - Michael Somos, Jun 10 2015
a(2*n) = A258779(n). a(2*n + 1) = 4 * A187150(n). - Michael Somos, Jun 10 2015
Showing 1-2 of 2 results.