cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187274 a(n) = n*4^(n/2 - 1)*(9 + (-1)^n).

Original entry on oeis.org

0, 4, 20, 48, 160, 320, 960, 1792, 5120, 9216, 25600, 45056, 122880, 212992, 573440, 983040, 2621440, 4456448, 11796480, 19922944, 52428800, 88080384, 230686720, 385875968, 1006632960, 1677721600, 4362076160, 7247757312, 18790481920, 31138512896, 80530636800, 133143986176, 343597383680
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2011

Keywords

Examples

			G.f. = 4*x + 20*x^2 + 48*x^3 + 160*x^4 + 320*x^5 + 960*x^6 + 1792*x^7 + ... - _Michael Somos_, Jul 10 2018
		

Programs

  • GAP
    List([0..35],n->n*2^(n-2)*(9+(-1)^n)); # Muniru A Asiru, Jul 10 2018
    
  • Magma
    /* By definition: */ [Integers()!(n*4^(n/2-1)*(9+(-1)^n)): n in [0..40]]; // Bruno Berselli, Mar 29 2016
    
  • Magma
    I:=[0,4,20,48]; [n le 4 select I[n] else 8*Self(n-2)-16*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 29 2016
    
  • Maple
    See A187272.
  • Mathematica
    LinearRecurrence[{0,8,0,-16},{0,4,20,48},40] (* Harvey P. Dale, Dec 25 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(4*x*(x+1)*(4*x+1)/((2*x-1)^2*(2*x+ 1)^2))) \\ G. C. Greubel, Aug 14 2018
    
  • Python
    def A187274(n): return n<>1)<Chai Wah Wu, Feb 18 2024

Formula

a(n) = 8*a(n-2) - 16*a(n-4). - Colin Barker, Jul 25 2013
G.f.: 4*x*(x+1)*(4*x+1) / ((2*x-1)^2*(2*x+1)^2). - Colin Barker, Jul 25 2013
a(2*n) = 5*n*4^n, a(2*n+1) = (2*n+1)*4^(n+1). - Andrew Howroyd, Mar 28 2016
a(n) = -(4^n) * a(-n) for all n in Z. - Michael Somos, Jul 10 2018