cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A004003 Number of domino tilings (or dimer coverings) of a 2n X 2n square.

Original entry on oeis.org

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000, 2444888770250892795802079170816, 548943583215388338077567813208427340288, 1269984011256235834242602753102293934298576249856
Offset: 0

Views

Author

Keywords

Comments

A099390 is the main entry for domino tilings (or dimer tilings) of a rectangle.
The numbers of domino tilings in A006253, A004003, A006125 give the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Christine Bessenrodt points out that Pachter (1997) shows that a(n) is divisible by 2^n (cf. A065072).
a(n) is the number of different ways to cover a 2n X 2n lattice with 2n^2 dominoes. John and Sachs show that a(n) = 2^n*B(n)^2, where B(n) == n+1 (mod 32) when n is even and B(n) == (-1)^((n-1)/2)*n (mod 32) when n is odd. - Yong Kong (ykong(AT)curagen.com), May 07 2000

Examples

			The 36 solutions for the 4 X 4 board, from Neven Juric, May 14 2008:
A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)}
A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}
A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}
A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}
A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}
A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}
A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}
A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}
A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}
A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}
A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}
A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}
A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}
A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}
A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}
A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}
A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}
A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}
A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}
A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}
A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}
A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}
A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}
A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}
A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 569.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Darko Veljan, Kombinatorika s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

Main diagonal of array A099390 or A187596.

Programs

  • Maple
    f := n->2^(2*n^2)*product(product(cos(i*Pi/(2*n+1))^2+cos(j*Pi/(2*n+1))^2,j=1..n),i=1..n); for k from 0 to 12 do round(evalf(f(k),300)) od;
  • Mathematica
    a[n_] := Round[ N[ Product[ 2*Cos[(2i*Pi)/(2n+1)] + 2*Cos[(2j*Pi)/(2n+1)] + 4,  {i, 1, n}, {j, 1, n}], 300] ]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 04 2012, after Maple *)
    Table[Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Dec 30 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import I, resultant, chebyshevu
    def A004003(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevu(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023

Formula

a(n) = A099390(2n,2n).
a(n) = Product_{j=1..n} Product_{k=1..n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2). - N. J. A. Sloane, Mar 16 2015
a(n) = 2^n * A065072(n)^2. - Alois P. Heinz, Nov 22 2018
a(n)^2 = Resultant(U(2*n,x/2), U(2*n,i*x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 13 2020
a(n) ~ 2 * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

Extensions

Corrected and extended by David Radcliffe

A099390 Array T(m,n) read by antidiagonals: number of domino tilings (or dimer tilings) of the m X n grid (or m X n rectangle), for m>=1, n>=1.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 5, 0, 5, 0, 1, 8, 11, 11, 8, 1, 0, 13, 0, 36, 0, 13, 0, 1, 21, 41, 95, 95, 41, 21, 1, 0, 34, 0, 281, 0, 281, 0, 34, 0, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 0, 89, 0, 2245, 0, 6728, 0, 2245, 0, 89, 0, 1, 144, 571, 6336, 14824, 31529, 31529, 14824, 6336, 571, 144, 1
Offset: 1

Views

Author

Ralf Stephan, Oct 16 2004

Keywords

Comments

There are many versions of this array (or triangle) in the OEIS. This is the main entry, which ideally collects together all the references to the literature and to other versions in the OEIS. But see A004003 for further information. - N. J. A. Sloane, Mar 14 2015

Examples

			0,  1,  0,   1,    0,    1, ...
1,  2,  3,   5,    8,   13, ...
0,  3,  0,  11,    0,   41, ...
1,  5, 11,  36,   95,  281, ...
0,  8,  0,  95,    0, 1183, ...
1, 13, 41, 281, 1183, 6728, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • P. E. John, H. Sachs, and H. Zernitz, Problem 5. Domino covers in square chessboards, Zastosowania Matematyki (Applicationes Mathematicae) XIX 3-4 (1987), 635-641.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 2nd ed., pp. 547 and 570.
  • Darko Veljan, Kombinatorika: s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

See A187596 for another version (with m >= 0, n >= 0). See A187616 for a triangular version. See also A187617, A187618.
See also A004003 for more literature on the dimer problem.
Main diagonal is A004003.

Programs

  • Maple
    (Maple code for the even-numbered rows from N. J. A. Sloane, Mar 15 2015. This is not totally satisfactory since it uses floating point. However, it is useful for getting the initial values quickly.)
    Digits:=100;
    p:=evalf(Pi);
    z:=proc(h,d) global p; evalf(cos( h*p/(2*d+1) )); end;
    T:=proc(m,n) global z; round(mul( mul( 4*z(h,m)^2+4*z(k,n)^2, k=1..n), h=1..m)); end;
    [seq(T(1,n),n=0..10)]; # A001519
    [seq(T(2,n),n=0..10)]; # A188899
    [seq(T(3,n),n=0..10)]; # A256044
    [seq(T(n,n),n=0..10)]; # A004003
  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2*(2+Cos[2j*Pi/(m+1)]+Cos[2k*Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    Flatten[Table[Round[T[m-n+1, n]], {m, 1, 12}, {n, 1, m}]] (* Jean-François Alcover, Nov 25 2011, updated May 28 2022 *)
  • PARI
    {T(n, k) = sqrtint(abs(polresultant(polchebyshev(n, 2, x/2), polchebyshev(k, 2, I*x/2))))} \\ Seiichi Manyama, Apr 13 2020

Formula

T(m, n) = Product_{j=1..ceiling(m/2)} Product_{k=1..ceiling(n/2)} (4*cos(j*Pi/(m+1))^2 + 4*cos(k*Pi/(n+1))^2).

Extensions

Old link fixed and new link added by Frans J. Faase, Feb 04 2009
Entry edited by N. J. A. Sloane, Mar 15 2015

A239264 Number A(n,k) of domicule tilings of a k X n grid; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 5, 5, 1, 1, 1, 0, 11, 0, 11, 0, 1, 1, 1, 21, 43, 43, 21, 1, 1, 1, 0, 43, 0, 280, 0, 43, 0, 1, 1, 1, 85, 451, 1563, 1563, 451, 85, 1, 1, 1, 0, 171, 0, 9415, 0, 9415, 0, 171, 0, 1, 1, 1, 341, 4945, 55553, 162409, 162409, 55553, 4945, 341, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Examples

			A(3,2) = 5:
  +-----+ +-----+ +-----+ +-----+ +-----+
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  ||    | ||  X | || | || | X  || |    ||
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  +-----+ +-----+ +-----+ +-----+ +-----+
A(4,3) = 43:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o o| |o o o-o| |o o-o o| |o o-o o| |o o-o o|
  ||  X  || | X     | | \   / | ||     || | \    ||
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |       | |     X | ||     || |   \ \ | ||    \ |
  |o-o o-o| |o-o o o| |o o-o o| |o-o o o| |o o-o o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
Square array A(n,k) begins:
  1, 1,  1,   1,    1,      1,       1, ...
  1, 0,  1,   0,    1,      0,       1, ...
  1, 1,  3,   5,   11,     21,      43, ...
  1, 0,  5,   0,   43,      0,     451, ...
  1, 1, 11,  43,  280,   1563,    9415, ...
  1, 0, 21,   0, 1563,      0,  162409, ...
  1, 1, 43, 451, 9415, 162409, 3037561, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A059841, A001045(n+1), A239265, A239266, A239267, A239268, A239269, A239270, A239271, A239272.
Bisection of main diagonal gives: A239273.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             `if`(k1 and l[k+d+1],
                                  b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                  b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k `if`(irem(n*k, 2)>0, 0,
        `if`(k>n, A(k, n), b(n, [true$(k*2)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which [n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n-1, Join[l[[d+1 ;; 2*d]], Array[True&, d]]], True, For[k=1, !l[[k]], k++]; If[k1 && l[[k+d+1]], b[n, ReplacePart[l, {k -> f, k+d+1 -> f}]], 0] + If[k>1 && n>1 && l[[k+d-1]], b[n, ReplacePart[l, {k -> f, k+d-1 -> f}]], 0] + If[n>1 && l[[k+d]], b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]; A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)

A187617 Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 11 2011

Keywords

Comments

A099390 is the main entry for this problem.
The even-indexed rows and columns of the square array in A187596.
Row (and column) 2 is given by A122367. - Nathaniel Johnston, Mar 22 2011

Examples

			The array begins:
  1,  1,     1,       1,          1,            1, ...
  1,  2,     5,      13,         34,           89, ...
  1,  5,    36,     281,       2245,        18061, ...
  1, 13,   281,    6728,     167089,      4213133, ...
  1, 34,  2245,  167089,   12988816,   1031151241, ...
  1, 89, 18061, 4213133, 1031151241, 258584046368, ...
		

Crossrefs

A187618 is the triangle version.
Main diagonal is A004003. Second and third rows give A001519, A188899.

Programs

  • Maple
    ft:=(m,n)->
    2^(m*n/2)*mul( mul(
    (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
    T:=(m,n)->round(evalf(ft(m,n),300));
  • Mathematica
    T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];
    Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ Seiichi Manyama, Jan 09 2021

Extensions

More terms from Nathaniel Johnston, Mar 22 2011

A187616 Triangle T(m,n) read by rows: number of domino tilings of the m X n grid (0 <= m <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 1, 5, 11, 36, 1, 0, 8, 0, 95, 0, 1, 1, 13, 41, 281, 1183, 6728, 1, 0, 21, 0, 781, 0, 31529, 0, 1, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 1, 0, 55, 0, 6336, 0, 817991, 0, 108435745, 0, 1, 1, 89, 571, 18061, 185921, 4213133, 53175517, 1031151241, 14479521761, 258584046368
Offset: 0

Views

Author

N. J. A. Sloane, Mar 11 2011

Keywords

Comments

A099390 is the main entry for this problem.
Triangle read by rows: the square array in A187596 with entries above main diagonal deleted.

Examples

			Triangle begins:
1
1 0
1 1  2
1 0  3   0
1 1  5  11   36
1 0  8   0   95     0
1 1 13  41  281  1183   6728
1 0 21   0  781     0  31529       0
1 1 34 153 2245 14824 167089 1292697 12988816
...
		

Crossrefs

Cf. A099390, A187596. See A099390 for sequences appearing in the rows and columns. See also A187617, A187618.

Programs

  • Maple
    with(LinearAlgebra):
    T:= proc(m,n) option remember; local i, j, t, M;
          if m<=1 or n<=1 then 1 -irem(n*m, 2)
        elif irem(n*m, 2)=1 then 0
        else M:= Matrix(n*m, shape =skewsymmetric);
             for i to n do
               for j to m do
                 t:= (i-1)*m+j;
                 if jAlois P. Heinz, Apr 11 2011
  • Mathematica
    T[m_, n_] := T[m, n] = Module[{i, j, t, M}, Which[m <= 1 || n <= 1, 1 - Mod[n*m, 2], Mod[n*m, 2] == 1, 0, True, M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j; If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1 - 2*Mod[j, 2]]]]; Sqrt[Det[Table[M[i, j], {i, 1, n*m}, {j, 1, n*m}]]]]]; Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}] // Flatten (* Jean-François Alcover, Jan 07 2014, translated from Maple *)

A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 15, 36, 15, 13, 1, 1, 1, 1, 21, 41, 95, 95, 41, 21, 1, 1, 1, 1, 34, 56, 281, 192, 281, 56, 34, 1, 1, 1, 1, 55, 153, 781, 1183, 1183, 781, 153, 55, 1, 1, 1, 1, 89, 209, 2245, 2415, 6728, 2415, 2245, 209, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___. . .___. . .___. . .___.
  ._|___| ._|___| ._| | | ._|___|
  | |___| | | | | | |_|_| |___| |
  |_|___| |_|_|_| |_|___| |___|_|
Array begins:
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  1,  1,   1,    1,    1, ...
  1, 1,  2,  3,   5,    8,   13, ...
  1, 1,  3,  4,  11,   15,   41, ...
  1, 1,  5, 11,  36,   95,  281, ...
  1, 1,  8, 15,  95,  192, 1183, ...
  1, 1, 13, 41, 281, 1183, 6728, ...
		

Crossrefs

Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474.
Main diagonal gives: A189002.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(m, n) option remember; local i, j, s, t, M;
          if m=0 or n=0 then 1
        elif m1 or j>1 or s=0 then
                   if j
    				
  • Mathematica
    A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)

A187618 Triangle T(m,n) read by rows: number of domino tilings of the 2m X 2n grid (0 <= m <= n).

Original entry on oeis.org

1, 1, 2, 1, 5, 36, 1, 13, 281, 6728, 1, 34, 2245, 167089, 12988816, 1, 89, 18061, 4213133, 1031151241, 258584046368, 1, 233, 145601, 106912793, 82741005829, 65743732590821, 53060477521960000, 1, 610, 1174500, 2720246633, 6675498237130, 16848161392724969, 43242613716069407953, 112202208776036178000000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 12 2011

Keywords

Comments

A099390 is the main entry for this problem.

Examples

			Triangle begins:
1
1       2
1       5       36
1       13      281     6728
1       34      2245    167089  12988816
1       89      ...
		

Crossrefs

Extensions

More terms from Nathaniel Johnston, Mar 22 2011

A340532 Number of domino tilings of a 16 X n rectangle.

Original entry on oeis.org

1, 1, 1597, 29681, 9475901, 366944287, 69289288909, 3710708201969, 540061286536921, 34741645659770711, 4337452956682508609, 313196612952258199679, 35457442115448212075033, 2764079753958605286860951, 293251198441417290172509377, 24080184063411167042923575793
Offset: 0

Views

Author

A. M. Magomedov and Serge Lawrencenko, Jan 10 2021

Keywords

Comments

Basically, for n = 1, 2, ..., 513, the terms a(n) are calculated by the double product formula in the program below, with the help of the authors' C# program using the BigInteger and BigFloat classes. (The computer calculations took 44 hours to complete.)
Alternatively, the value of a(513) is calculated by the homogeneous linear recurrence relation of order 256; the thus calculated value coincides with the one obtained by the classical double product formula. Furthermore, using the recurrence relation, the values of a(514), a(515), ..., a(10240) are also calculated. (The computer calculations took 4 minutes to complete.)

Examples

			a(1) = 1, since there is only one domino tiling of the 16 X n rectangle, which consists entirely of horizontal tiles.
a(2) = 1597 = F(17), since the number of domino tilings of the m X 2 rectangle is the Fibonacci number F(m+1).
Note that the terms a(16) and a(33) are even. More generally, for m even, the numbers of domino tilings of the m X m square and of the m X (2m+1) rectangle are even.
		

References

  • A. M. Magomedov, T. A. Magomedov, S. A. Lawrencenko, Mutually-recursive formulas for enumerating partitions of the rectangle (Russian, English summary), Prikl. Diskr. Mat., 46 (2019), 108-121.

Crossrefs

Subsequence of A099390.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
        else for k while l[k]>0 do od; `if`(n>1, b(n, subsop(k=2, l)), 0)+
             `if`(k b(n, [0$16]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    Do[
    P = 1; m = 16;
    Do[
      P = N[P*(4*Cos[Pi*i/(n + 1)]^2 + 4*Cos[Pi*j/(m + 1)]^2), 1020],
      {i, 1, n/2}, {j, 1, m/2}];
    Print["P=", N[P, 1020], " n=", n, " m=", m],
    {n, 1, 20}
    ]

Formula

The sequence is completely defined by the following formula, which is a special case of a classical double product formula (A099390): a(n) = Product_{j=1..8} (Product_{k=1..floor(n/2)} (4*(cos(j*Pi/17))^2 + 4*(cos(k*Pi/(n+1)))^2)). In addition, a homogeneous linear recurrence relation of order 256 with constant coefficients is obtained to generate the sequence.
a(n) = A187596(16,n) = A187596(n,16). - Alois P. Heinz, Jan 10 2021

A241908 Number of perfect matchings in graph P_{13} X P_{2n}.

Original entry on oeis.org

1, 377, 413351, 536948224, 731164253833, 1012747193318519, 1412218550274852671, 1974622635952709613247, 2764079753958605286860951, 3870940598132705729413670953, 5422065916132126528319352874496, 7595338059193606161156363370300487, 10640045682768766172108553992086690201
Offset: 0

Views

Author

Sergey Perepechko, May 01 2014

Keywords

Comments

In Karavaev and Perepechko generating functions G_m(x) for P_m X P_n graphs were found for all values of m up to 27.

References

  • A. M. Karavaev and S. N. Perepechko, Generating functions for dimer problem on rectangular lattices (in Russian), Information Processes, 13(2013), No4, 374-400.

Crossrefs

Row 13 of array A099390.

Programs

  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020

A256044 6th row of array in A099390.

Original entry on oeis.org

1, 13, 281, 6728, 167089, 4213133, 106912793, 2720246633, 69289288909, 1765722581057, 45005025662792, 1147185247901449, 29242880940226381, 745439797095329713, 19002353776441540177, 484398978524471931341, 12348080425980866090537, 314771823879840325570888
Offset: 0

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Crossrefs

Cf. A099390.
Bisection (even part) of A028468 and 6th row of A187596. - Alois P. Heinz, Mar 16 2015

Programs

  • Magma
    I:=[1,13,281,6728,167089,4213133,106912793]; [n le 7 select I[n] else 40*Self(n-1)-416*Self(n-2)+1224*Self(n-3)-1224*Self(n-4)+416*Self(n-5)-40*Self(n-6)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Aug 20 2018
  • Mathematica
    a[n_] := Product[2(2+Cos[2j Pi/7]+Cos[2k Pi/(2n+1)]), {k, 1, n}, {j, 1, 3}] // Round;
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 20 2018 *)
    LinearRecurrence[{40, -416, 1224, -1224, 416, -40, 1}, {1, 13, 281, 6728, 167089, 4213133, 106912793}, 20] (* Vincenzo Librandi, Aug 20 2018 *)
  • PARI
    x='x+O('x^100); Vec(-(x^6-27*x^5+177*x^4-328*x^3+177*x^2-27*x+1)/((x-1)*(x^3-26*x^2+13*x-1)*(x^3-13*x^2+26*x-1))) \\ Altug Alkan, Mar 23 2016
    

Formula

G.f.: -(x^6 - 27*x^5 + 177*x^4 - 328*x^3 + 177*x^2 - 27*x + 1) / ((x - 1)*(x^3 - 26*x^2 + 13*x - 1)*(x^3 - 13*x^2 + 26*x - 1)). - Alois P. Heinz, Mar 16 2015
a(n) = 40*a(n-1) - 416*a(n-2) + 1224*a(n-3) - 1224*a(n-4) + 416*a(n-5) - 40*a(n-6) + a(n-7). - Vincenzo Librandi, Aug 20 2018

Extensions

a(8)-a(17) from Alois P. Heinz, Mar 16 2015
Showing 1-10 of 12 results. Next