cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A240942 Numbers k that divide 2^k + 9.

Original entry on oeis.org

1, 11, 121, 323, 117283, 432091, 4132384531, 15516834659, 15941429747, 98953554491, 3272831195051, 7362974489179, 26306805687881, 33869035218491, 280980898827691
Offset: 1

Views

Author

Derek Orr, Aug 04 2014

Keywords

Comments

No other terms below 10^15. Some larger terms: 53496121130110340001650284048539458491, 136243118444105327963550175410279542214992801356720577. - Max Alekseyev, Sep 29 2016

Examples

			2^11 + 9 = 2057 is divisible by 11. Thus 11 is a term of this sequence.
		

Crossrefs

Programs

  • Maple
    select(n -> 9 + 2 &^ n mod n = 0, [$1..10^6]); # Robert Israel, Aug 04 2014
  • PARI
    for(n=1,10^9, if(Mod(2,n)^n==-9, print1(n,", "); ); );

Extensions

a(7)-a(10) from Lars Blomberg, Nov 05 2014
a(11)-a(15) from Max Alekseyev, Sep 29 2016

A242475 a(n) = 2^n + 8.

Original entry on oeis.org

9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0

Views

Author

Vincenzo Librandi, May 20 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^n+8: n in [0..40]];
  • Mathematica
    Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
    LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)

Formula

G.f.: (9 - 17*x)/((1 - x)*(1 - 2*x)).
a(n) = 2*a(n-1) - 8 = 3*a(n-1) - 2*a(n-2).
a(n) = A052548(n)+6 = A140504(n)+4 = A153972(n)+2.
E.g.f.: exp(2*x) + 8*exp(x). - Elmo R. Oliveira, Nov 11 2023

A246139 a(n) = 2^n + 10.

Original entry on oeis.org

11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Comments

First trisection of A085688. [Bruno Berselli, Aug 19 2014]

Crossrefs

Cf. Sequences of the form 2^n + k: A000079 (k=0), A000051 (k=1), A052548 (k=2), A062709 (k=3), A140504 (k=4), A168614 (k=5), A153972 (k=6), A168415 (k=7), A242475 (k=8), A188165 (k=9), this sequence (k=10).
Cf. A085688.

Programs

  • Magma
    [2^n+10: n in [0..40]];
    
  • Mathematica
    Table[2^n + 10, {n, 0, 40}]
  • PARI
    vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (11 - 21*x)/(1 - 3*x + 2*x^2).
a(n) = A000079(n) + 10.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
E.g.f.: exp(2*x) + 10*exp(x). - Elmo R. Oliveira, Nov 11 2023

A195463 a(n) = 4^(n+1) + 7.

Original entry on oeis.org

11, 23, 71, 263, 1031, 4103, 16391, 65543, 262151, 1048583, 4194311, 16777223, 67108871, 268435463, 1073741831, 4294967303, 17179869191, 68719476743, 274877906951, 1099511627783, 4398046511111, 17592186044423, 70368744177671, 281474976710663, 1125899906842631
Offset: 0

Views

Author

Brad Clardy, Sep 19 2011

Keywords

Comments

These are the even terms of A168415. Since the odd terms of A168415 are divisible by three the primes of this sequence are the same as A104066.

Crossrefs

Programs

Formula

a(n) = 4^(n+1) + 7.
From Alexander R. Povolotsky, Sep 19 2011: (Start)
G.f.: (11 - 32*x)/(1 - 5*x + 4*x^2).
a(n+1) = 4*a(n) - 21. (End)
a(n) = A188165(2*n+2) - 2. - Bruno Berselli, Sep 26 2011
E.g.f.: exp(x)*(4*exp(3*x) + 7). - Elmo R. Oliveira, Feb 20 2025

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023
Showing 1-5 of 5 results.