cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1

Views

Author

Keywords

Comments

Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - Keith Briggs, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019

References

  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
  • J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).

Programs

Formula

a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021

Extensions

Name edited by Peter Munn, Mar 13 2019

A067698 Positive integers such that sigma(n) >= exp(gamma) * n * log(log(n)).

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

Previous name was: Numbers with relatively many and large divisors.
n is in the sequence iff sigma(n) >= exp(gamma) * n * log(log(n)), where gamma = Euler-Mascheroni constant and sigma(n) = sum of divisors of n.
Robin has shown that 5040 is the last element in the sequence iff the Riemann hypothesis is true. Moreover the sequence is infinite if the Riemann hypothesis is false. Gronwall's theorem says that
lim sup_{n -> infinity} sigma(n)/(n*log(log(n))) = exp(gamma).
a(28) > 10^(10^13.11485), if the Riemann hypothesis is false (Morrill and Platt, 2021). Briggs (2006) found the lower bound 10^(10^10). - Amiram Eldar, Jul 23 2025

Examples

			9 is in the sequence since sigma(9) = 13 > 12.6184... = exp(gamma) * 9 * log(log(9)).
		

Crossrefs

Cf. A057641 (based on Lagarias's extension of Robin's result).

Programs

  • Maple
    with (numtheory): expgam := exp(evalf(gamma)): for i from 2 to 6000 do: a := sigma (i): b := expgam*i*evalf(ln(ln(i))): if a >= b then print (i, a, b): fi: od:
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > n*Exp@ EulerGamma*Log@ Log@n; lst = {}; Do[ If[ fQ[n], AppendTo[lst, n]], {n,2,10^4}]; lst (* Robert G. Wilson v, May 16 2003 *)
    Select[Range[2,5050], Exp[EulerGamma] # Log[Log[#]]-DivisorSigma[1,#]<0 &] (* Ant King, Feb 28 2013 *)
  • PARI
    is(n)=sigma(n) >= exp(Euler) * n * log(log(n)) \\ Charles R Greathouse IV, Feb 08 2017
    
  • Python
    from sympy import divisor_sigma, EulerGamma, E, log
    print([n for n in range(2, 5041) if divisor_sigma(n) >= (E**EulerGamma * n * log(log(n)))]) # Karl-Heinz Hofmann, Apr 22 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Max Alekseyev, Jul 17 2007
New name from Jud McCranie, Aug 14 2017

A210594 "Factor-dense" numbers: integers n where (# of proper divisors of n) / log(n) sets a new record.

Original entry on oeis.org

2, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600
Offset: 1

Views

Author

Daniel Bishop, Mar 23 2012

Keywords

Comments

Let d(n) = the number of proper divisors of n (A032741).
Define the "factor density" of n as f(n) = d(n) / log(n).
n is "factor dense" if f(m) < f(n) for all integers m where 2 <= m < n.
Missing highly-composite numbers (A002182) are 4 and 45360.
An alternative definition of factor density is g(n) = tau(n) / log(1+n), where tau(n) is the total number of divisors of n (A000005). Then records for g(n) appear to be set at all members of this sequence together with 1 and 4. - Hal M. Switkay, Sep 07 2022

Crossrefs

Cf. A189686.

Programs

  • Mathematica
    f[n_] := N[(DivisorSigma[0, n] - 1)/Log[n]]; mx = 0; lst = {}; Do[ If[ f[n] > mx, mx = f[n]; AppendTo[lst, n]], {n, 2, 4000000, 2}]; t (* T. D. Noe, Mar 23 2012 *)
  • PARI
    lista(nn) = {my(m=0); for (n=2, nn, my(mm = (numdiv(n)-1)/log(n)); if (mm > m, print1(n, ", "); m = mm););} \\ Michel Marcus, Sep 08 2022

A192884 Non-superabundant numbers satisfying the reverse of Robin's inequality (A091901).

Original entry on oeis.org

3, 5, 8, 9, 10, 16, 18, 20, 30, 72, 84
Offset: 1

Views

Author

Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, Jul 11 2011

Keywords

Comments

If another term exists, it is > 5040 and the Riemann Hypothesis is false.

Crossrefs

Cf. A004394 (superabundant), A091901 (Robin's inequality), A067698 (the reverse of Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality).
Showing 1-4 of 4 results.