A155598
a(n) = 7^n-2^n+1.
Original entry on oeis.org
1, 6, 46, 336, 2386, 16776, 117586, 823416, 5764546, 40353096, 282474226, 1977324696, 13841283106, 96889002216, 678223056466, 4747561477176, 33232930504066, 232630513856136, 1628413597648306, 11398895184848856
Offset: 0
-
Table[7^n-2^n+1,{n,0,20}] (* or *) LinearRecurrence[{10,-23,14},{1,6,46},20] (* Harvey P. Dale, Feb 28 2013 *)
-
a(n)=7^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
A016130
Expansion of g.f. 1/((1-2*x)*(1-7*x)).
Original entry on oeis.org
1, 9, 67, 477, 3355, 23517, 164683, 1152909, 8070619, 56494845, 395464939, 2768256621, 19377800443, 135644611293, 949512295435, 6646586100813, 46526102771227, 325682719529661, 2279779036969771, 15958453259312685, 111709172816237371, 781964209715758749, 5473749468014505547
Offset: 0
1/((1-2*x)*(1-7*x)) = 1 + 9*x + 67*x^2 + 477*x^3 + 3355*x^4 + 23517*x^5 + 164683*x^6 + ...
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x) (1-7*x)))); // Vincenzo Librandi, Jun 24 2013
-
Join[{a=1,b=9},Table[c=9*b-14*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
CoefficientList[Series[1 /((1 - 2 x) (1 - 7 x)), {x, 0, 200}], x] (* Vincenzo Librandi, Jun 24 2013 *)
-
Vec(1/((1-2*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
[lucas_number1(n,9,14) for n in range(1, 20)] # Zerinvary Lajos, Apr 23 2009
-
[(7^n - 2^n)/5 for n in range(1,20)] # Zerinvary Lajos, Jun 04 2009
A248216
a(n) = 6^n - 2^n.
Original entry on oeis.org
0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0
-
[6^n-2^n: n in [0..25]];
-
Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
-
[2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021
Showing 1-3 of 3 results.