cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A036239 Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.

Original entry on oeis.org

0, 2, 15, 80, 375, 1652, 7035, 29360, 120975, 494252, 2007555, 8120840, 32753175, 131818052, 529680075, 2125927520, 8525298975, 34165897052, 136857560595, 548011897400, 2193792030375, 8780400395252, 35137296305115, 140596265198480
Offset: 1

Views

Author

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008
Graph theory formulation. Let P(A) be the power set of an n-element set A. Then a(n) = the number of edges in the intersection graph G of P(A). The vertices of G are the elements of P(A) and the edges of G are the pairs of elements {x,y} of P(A) such that x and y are intersecting (and x <> y). - Ross La Haye, Dec 23 2017

References

  • W. W. Kokko, "Interactions", manuscript, 1983.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,2,15,80},40] (* or *) With[{c=1/2!}, Table[ c(4^n-3^n-2^n+1),{n,40}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=(4^n-3^n-2^n+1)/2 \\ Charles R Greathouse IV, Jul 25 2011
  • Sage
    [(4^n - 2^n)/2-(3^n - 1)/2 for n in range(1,24)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2) * (4^n - 3^n - 2^n + 1).
a(n) = 3*Stirling2(n+1,4) + 2*Stirling2(n+1,3). - Ross La Haye, Jan 10 2008
a(n) = A006516(n) - A003462(n). - Zerinvary Lajos, Jun 05 2009
From Harvey P. Dale, May 11 2011: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4); a(0)=0, a(1)=2, a(2)=15, a(3)=80.
G.f.: x^2*(2-5*x)/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4). (End)
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 1)/2. - Stefano Spezia, Jun 26 2022

A367300 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 3, 2, 10, 10, 3, 33, 46, 22, 4, 109, 194, 131, 40, 5, 360, 780, 678, 296, 65, 6, 1189, 3036, 3228, 1828, 581, 98, 7, 3927, 11546, 14514, 10100, 4194, 1036, 140, 8, 12970, 43150, 62601, 51664, 26479, 8604, 1722, 192, 9, 42837, 159082, 261598, 249720, 152245, 61318, 16248, 2712, 255, 10
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
     1
     3      2
    10     10      3
    33     46     22      4
   109    194    131     40     5
   360    780    678    296    65     6
  1189   3036   3228   1828   581    98    7
  3927  11546  14514  10100  4194  1036  140  8
Row 4 represents the polynomial p(4,x) = 33 + 46*x + 22*x^2 + 4*x^3, so (T(4,k)) = (33,46,22,4), k=0..3.
		

Crossrefs

Cf. A006190 (column 1); A000027 (p(n,n-1)); A107839 (row sums, p(n,1)); A001045 (alternating row sums, p(n,-1)); A030240 (p(n,2)); A039834 (signed Fibonacci numbers, p(n,-2)); A016130 (p(n,3)); A225883 (p(n,-3)); A099450 (p(n,-4)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 3 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 3 + 2*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(13 + 4*x)), b = (1/2) (2*x + 3 + 1/k), c = (1/2) (2*x + 3 - 1/k).

A016311 Expansion of 1/((1-2*x)*(1-7*x)*(1-8*x)).

Original entry on oeis.org

1, 17, 203, 2101, 20163, 184821, 1643251, 14298917, 122461955, 1036190485, 8684988819, 72248167173, 597363137827, 4914549713909, 40265910006707, 328773866154469, 2676717032006979, 21739418975585493
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016130, A016131. - Zerinvary Lajos, Jun 05 2009

Programs

  • Magma
    [(160*8^n-147*7^n+2*2^n)/15: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{17,-86,112},{1,17,203},30] (* Harvey P. Dale, Jul 12 2012 *)
  • Sage
    [(8^n - 2^n)/6-(7^n - 2^n)/5 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = A016131(n+1) - A016130(n+1). - Zerinvary Lajos, Jun 05 2009
a(n) = 4*8^(n+1)/3 - 7^(n+2)/5 + 2^(n+1)/15. - R. J. Mathar, Mar 14 2011
From Vincenzo Librandi, Sep 02 2011: (Start)
a(n) = (160*8^n - 147*7^n + 2*2^n)/15;
a(n) = 15*a(n-1) - 56*a(n-2) + 2^n. (End)
a(n) = 17*a(n-1) - 86*a(n-2) + 112*a(n-3), with a(0)=1, a(1)=17, a(2)=203. - Harvey P. Dale, Jul 12 2012

A074602 a(n) = 2^n + 7^n.

Original entry on oeis.org

2, 9, 53, 351, 2417, 16839, 117713, 823671, 5765057, 40354119, 282476273, 1977328791, 13841291297, 96889018599, 678223089233, 4747561542711, 33232930635137, 232630514118279, 1628413598172593, 11398895185897431
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Crossrefs

Programs

  • Magma
    [2^n + 7^n: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
  • Mathematica
    Table[2^n + 7^n, {n, 0, 25}]
    LinearRecurrence[{9,-14},{2,9},20] (* Harvey P. Dale, May 10 2025 *)

Formula

a(n) = 7*a(n-1) - 2^n = 9*a(n-1) - 14*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-2*x) + 1/(1-7*x).
E.g.f.: e^(2*x) + e^(7*x). (End)
a(n) = 2*A016130(n)-9*A016130(n-1). - R. J. Mathar, Mar 10 2022

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A190540 a(n) = 7^n - 2^n.

Original entry on oeis.org

0, 5, 45, 335, 2385, 16775, 117585, 823415, 5764545, 40353095, 282474225, 1977324695, 13841283105, 96889002215, 678223056465, 4747561477175, 33232930504065, 232630513856135, 1628413597648305, 11398895184848855, 79792266296563425, 558545864081186855, 3909821048578793745
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2011

Keywords

Comments

Length-n words from letters {1,2,...,7} with at least one letter >2. [Joerg Arndt, Jun 02 2011]

Crossrefs

Programs

  • Magma
    [7^n -2^n: n in [0..30]];
    
  • Mathematica
    CoefficientList[Series[5 x/((1 - 2 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
  • PARI
    a(n)=7^n-1<Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 9*a(n-1) - 14*a(n-2).
G.f.: 5*x/((1-2*x)*(1-7*x)). - Vincenzo Librandi, Oct 04 2014
a(n) = 5*A016130(n-1). - R. J. Mathar, Mar 10 2022
E.g.f.: exp(2*x)*(exp(5*x) - 1). - Elmo R. Oliveira, Sep 10 2024

A016304 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)).

Original entry on oeis.org

1, 15, 157, 1419, 11869, 94731, 733069, 5551323, 41378557, 304766187, 2224062061, 16112628987, 116053574365, 831966057483, 5941308640333, 42294437942811, 300292730428093, 2127439102098219, 15044413649559085
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 15 else n eq 3 select 157 else 15*Self(n-1)-68*Self(n-2) +84*Self(n-3): n in [1..20] ]; // Vincenzo Librandi, Aug 25 2011
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -68, 84}, {1, 15, 157}, 30]
  • PARI
    Vec(1/((1-2*x)*(1-6*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(7^n - 2^n)/5-(6^n - 2^n)/4 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (7^(n+2) - 2^(n+2))/5-(6^(n+2) - 2^(n+2))/4. - Zerinvary Lajos, Jun 05 2009 [corrected by Joerg Arndt, Aug 25 2011]
From Vincenzo Librandi, Aug 25 2011: (Start)
a(n) = 15*a(n-1) - 68*a(n-2) + 84*a(n-3) for n > 2;
a(n) = 13*a(n-1) - 42*a(n-2) + 2^n for n > 1. (End)
E.g.f.: exp(2*x)*(1 - 45*exp(4*x) + 49*exp(5*x))/5. - Stefano Spezia, Aug 25 2025

A016282 Expansion of 1/((1-2*x)*(1-4*x)*(1-5*x)).

Original entry on oeis.org

1, 11, 83, 535, 3171, 17871, 97483, 520055, 2731091, 14179231, 72992283, 373347975, 1900290211, 9635660591, 48715157483, 245723238295, 1237206060531, 6220389909951, 31239388241083, 156746696495015, 785932504682051, 3938458614335311, 19727477439571083
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 1/((1 - 2x)(1 - 4x)(1 - 5x)), {x, 0, 20} ], x ]
    LinearRecurrence[{11,-38,40},{1,11,83},30] (* Harvey P. Dale, Nov 29 2022 *)
  • PARI
    Vec(1/((1-2*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(5^n - 2^n)/3-(4^n - 2^n)/2 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (2/3)*2^n - 8*(4)^n + (25/3)*5^n. - Antonio Alberto Olivares, May 12 2012

A016295 Expansion of 1/((1-2x)(1-5x)(1-6x)).

Original entry on oeis.org

1, 13, 117, 905, 6461, 43953, 289717, 1868425, 11861421, 74423393, 462815717, 2858273145, 17556537181, 107373722833, 654414852117, 3977351721065, 24118423433741, 145982106270273, 882250466222917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-52,60},{1,13,117},20] (* Harvey P. Dale, Mar 26 2016 *)
  • Sage
    [(6^n - 2^n)/4-(5^n - 2^n)/3 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009

Formula

a(n) = A016129(n+1) - A016127(n+1). - Zerinvary Lajos, Jun 05 2009
a(n) = 13*a(n-1) - 52*a(n-2) + 60*a(n-3), n >= 3.
a(n) = 11*a(n-1) - 30*a(n-2) + 2^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 7*a(n-1) - 10*a(n-2) + 6^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 8*a(n-1) - 12*a(n-2) + 5^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = -5^(n+2)/3 + 9*6^n + 2^n/3. - R. J. Mathar, Mar 18 2011

A016633 Expansion of g.f. 1/((1-2*x)*(1-11*x)*(1-12*x)).

Original entry on oeis.org

1, 25, 447, 6989, 101759, 1417941, 19180519, 253983853, 3309800367, 42599540357, 542895780791, 6863463633117, 86197420501375, 1076563471968373, 13382900349107463, 165700329729679181, 2044564737700501583, 25152545442794015589, 308625999807796411735, 3778261997130507936445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(648*12^n +2^(n+1)-5*11^(n+2))/45 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1 - 2 x) (1 - 11 x) (1 - 12 x)), {x, 0, 15}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • PARI
    Vec(1/((1-2*x)*(1-11*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(12^n - 2^n)/10-(11^n - 2^n)/9 for n in range(2,18)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Vincenzo Librandi, Oct 09 2011: (Start)
a(n) = (648*12^n + 2^(n+1) - 5*11^(n+2))/45.
a(n) = 23*a(n-1) - 132*a(n-2) + 2^n.
a(n) = 25*a(n-1) - 178*a(n-2) + 264*a(n-3), n >= 3. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(2*x)*(648*exp(10*x) - 605*exp(9*x) + 2)/45.
a(n) = A016136(n+1) - A016135(n+1). (End)
Showing 1-10 of 15 results. Next