A051185
Number of intersecting families of an n-element set. Also number of n-variable clique Boolean functions.
Original entry on oeis.org
2, 6, 40, 1376, 1314816, 912818962432, 291201248266450683035648, 14704022144627161780744368338695925293142507520, 12553242487940503914363982718112298267975272720808010757809032705650591023015520462677475328
Offset: 1
a(2) = 6 because we have: {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}. - _Geoffrey Critzer_, Aug 16 2013
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Pogosyan G., Miyakawa M., A. Nozaki, Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
-
Table[Length[
Select[Subsets[Subsets[Range[1, n]]],
Apply[And,
Flatten[Table[
Table[Intersection[#[[i]], #[[j]]] != {}, {i, 1,
Length[#]}], {j, 1, Length[#]}]]] &]], {n, 1, 4}] (* Geoffrey Critzer, Aug 16 2013 *)
A051180
Number of 3-element intersecting families of an n-element set.
Original entry on oeis.org
0, 0, 0, 13, 222, 2585, 25830, 238833, 2111382, 18142585, 152937510, 1271964353, 10476007542, 85662034185, 696700867590, 5643519669073, 45575393343702, 367206720319385, 2953481502692070, 23723872215168993, 190372457332919862
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (29,-343,2135,-7504,14756,-14832,5760).
-
seq(1/3!*(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2),n=0..40);
-
Table[1/3!(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2),{n,0,30}] (* or *) LinearRecurrence[{29,-343,2135,-7504,14756,-14832,5760},{0,0,0,13,222,2585,25830},30] (* Harvey P. Dale, Jul 07 2013 *)
-
for(n=0,25, print1((1/3!)*(8^n-3*6^n+3*5^n-4*4^n+3*3^n+2*2^n-2), ", ")) \\ G. C. Greubel, Oct 06 2017
A051181
Number of 4-element intersecting families of an n-element set.
Original entry on oeis.org
0, 0, 0, 4, 365, 11770, 278455, 5715094, 108498285, 1963243930, 34404675635, 589459538734, 9933916068505, 165358097339890, 2726894329246815, 44648990949187174, 727080119853611525, 11790570902483264650, 190587735542474633995, 3073193346666282232414
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (83, -3052, 65670, -919413, 8804499, -58966886, 277278100, -904270136, 1982352768, -2749917312, 2142305280, -696729600).
-
Table[1/4! (16^n - 6*12^n + 12*10^n - 9^n - 22*8^n + 15*7^n + 12*6^n - 17*5^n + 17*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{83,-3052,65670,-919413,8804499,-58966886,277278100,-904270136,1982352768,-2749917312,2142305280,-696729600},{0,0,0,4,365,11770,278455,5715094,108498285,1963243930,34404675635,589459538734},20] (* Harvey P. Dale, Jul 04 2019 *)
-
for(n=0,25, print1((1/4!)*(16^n-6*12^n+12*10^n-9^n-22*8^n+15*7^n +12*6^n-17*5^n+17*4^n-11*3^n-6*2^n+6), ", ")) \\ G. C. Greubel, Oct 06 2017
A051184
Number of 7-element intersecting families of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 80, 169125, 71102400, 18047221707, 3623784887164, 638772147728325, 103751227132038920, 15931275037246743999, 2348130220089143792148, 335520750110815538499945, 46803828588394634589433120
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A053154
Number of 2-element intersecting families (with not necessarily distinct sets) of an n-element set.
Original entry on oeis.org
0, 1, 5, 22, 95, 406, 1715, 7162, 29615, 121486, 495275, 2009602, 8124935, 32761366, 131834435, 529712842, 2125993055, 8525430046, 34166159195, 136858084882, 548012945975, 2193794127526, 8780404589555, 35137304693722
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(4^n-3^n+2^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Oct 06 2017
-
Table[(4^n-3^n+2^n-1)/2, {n,1,30}] (* Clark Kimberling, Mar 12 2012 *)
CoefficientList[Series[x (1 - 5 x + 7 x^2) / ((1 - x) (1 - 4 x) (1 - 3 x) (1 - 2 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n) = (4^n-3^n+2^n-1)/2; \\ Michel Marcus, Nov 30 2015
A036240
Number of 3-way interactions when 3 subsets of power set on {1..n} are chosen at random; number of Boolean functions of n variables and rank 3 from Post class F(8,inf).
Original entry on oeis.org
0, 0, 12, 200, 2280, 22420, 205212, 1806000, 15522960, 131383340, 1100093412, 9138243400, 75445046040, 619838752260, 5072272077612, 41371548418400, 336519691295520, 2730963319321180, 22119245290765812, 178854325039467000, 1444135501669535400
Offset: 1
- W. W. Kokko, "Interactions", manuscript, 1983.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (25,-241,1135,-2734,3160,-1344).
-
[(8^n-7^n-3*4^n+3*3^n+2*2^n-2)/6 : n in [1..30]]; // Wesley Ivan Hurt, Oct 23 2014
-
A036240:=n->(8^n-7^n-3*4^n+3*3^n+2*2^n-2)/6: seq(A036240(n), n=1..30); # Wesley Ivan Hurt, Oct 23 2014
-
CoefficientList[Series[4 x^2 (43 x^2 - 25 x + 3)/((x - 1) (2 x - 1) (3 x - 1) (4 x - 1) (7 x - 1) (8 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 21 2013 *)
LinearRecurrence[{25,-241,1135,-2734,3160,-1344},{0,0,12,200,2280,22420},30] (* Harvey P. Dale, Dec 29 2013 *)
-
a(n) = (1/3!)*(8^n-7^n-3*4^n+3*3^n+2*2^n-2); \\ Joerg Arndt, Oct 21 2013
A051182
Number of 5-element intersecting families of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 371, 38163, 2236504, 103998636, 4289058501, 164693276181, 6034793020298, 213993130915542, 7407880110115111, 251837583669470799, 8443568934653875932, 280082506996725346368
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A051183
Number of 6-element intersecting families of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 230, 91993, 14037879, 1509286261, 136653987232, 11209147489701, 862949794999193, 63573922606869037, 4535012297248660194, 315713834759742768349, 21570075957885603579067
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A053152
Number of 2-element intersecting families whose union is an n-element set.
Original entry on oeis.org
0, 2, 9, 32, 105, 332, 1029, 3152, 9585, 29012, 87549, 263672, 793065, 2383292, 7158069, 21490592, 64504545, 193579172, 580868589, 1742867912, 5229128025, 15688432652, 47067395109, 141206379632, 423627527505, 1270899359732, 3812731633629, 11438262009752
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[Floor((3^n-2^n)/2): n in [1..30]]; // Vincenzo Librandi, Mar 17 2015
-
A053152:=n->floor((3^n-2^n)/2): seq(A053152(n), n=1..30); # Wesley Ivan Hurt, Mar 19 2015
-
CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
LinearRecurrence[{6,-11,6}, {0,2,9}, 50] (* G. C. Greubel, Oct 06 2017 *)
-
for(n=1,50, print1((1/2)*(3^n -2^n -1), ", ")) \\ G. C. Greubel, Oct 06 2017
-
[(3^n - 1)/2-2^(n-1) for n in range(1,27)] # Zerinvary Lajos, Jun 05 2009
A053156
Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.
Original entry on oeis.org
1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
-
A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
-
LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
-
a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
Showing 1-10 of 30 results.
Comments