cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A051185 Number of intersecting families of an n-element set. Also number of n-variable clique Boolean functions.

Original entry on oeis.org

2, 6, 40, 1376, 1314816, 912818962432, 291201248266450683035648, 14704022144627161780744368338695925293142507520, 12553242487940503914363982718112298267975272720808010757809032705650591023015520462677475328
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Also the number of n-ary Boolean polymorphisms of the binary Boolean relation OR, namely the Boolean functions f(x1,...,xn) with the property that (x1 or y1) and ... and (xn or yn) implies f(x1,...,xn) or f(y1,...,yn). - Don Knuth, Dec 04 2019
These values are necessarily divisible by powers of 2. The sequence of exponents begins 1, 1, 3, 5, 12, 22, 49, 93, ... , 2^(n-1)-C(n-1,floor(n/2)-1), ... (cf. A191391). - Andries E. Brouwer, Aug 07 2012
a(1) = 2^1.
a(2) = 6 = 2^1 * 3
a(3) = 2^3 * 5.
a(4) = 2^5 * 43.
a(5) = 2^12 * 3 * 107.
a(6) = 2^22 * 13 * 16741.
a(7) = 2^49 * 2111 * 245039,
a(8) = 2^93 * 3^2 * 5 * 7211 * 76697 * 59656829,
a(9) = 2^200 * 1823 * 2063 * 576967 * 3600144350906020591.
An intersecting family is a collection of subsets of {1,2,...,n} such that the intersection of every subset with itself or with any other subset in the family is nonempty. The maximum number of subsets in an intersecting family is 2^(n-1). - Geoffrey Critzer, Aug 16 2013

Examples

			a(2) = 6 because we have: {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}. - _Geoffrey Critzer_, Aug 16 2013
		

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
  • Pogosyan G., Miyakawa M., A. Nozaki, Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.

Crossrefs

Programs

  • Mathematica
    Table[Length[
      Select[Subsets[Subsets[Range[1, n]]],
       Apply[And,
         Flatten[Table[
           Table[Intersection[#[[i]], #[[j]]] != {}, {i, 1,
    Length[#]}], {j, 1, Length[#]}]]] &]], {n, 1, 4}] (* Geoffrey Critzer, Aug 16 2013 *)

Extensions

a(8)-a(9) by Andries E. Brouwer, Aug 07 2012, Dec 11 2012

A036239 Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.

Original entry on oeis.org

0, 2, 15, 80, 375, 1652, 7035, 29360, 120975, 494252, 2007555, 8120840, 32753175, 131818052, 529680075, 2125927520, 8525298975, 34165897052, 136857560595, 548011897400, 2193792030375, 8780400395252, 35137296305115, 140596265198480
Offset: 1

Views

Author

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008
Graph theory formulation. Let P(A) be the power set of an n-element set A. Then a(n) = the number of edges in the intersection graph G of P(A). The vertices of G are the elements of P(A) and the edges of G are the pairs of elements {x,y} of P(A) such that x and y are intersecting (and x <> y). - Ross La Haye, Dec 23 2017

References

  • W. W. Kokko, "Interactions", manuscript, 1983.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,2,15,80},40] (* or *) With[{c=1/2!}, Table[ c(4^n-3^n-2^n+1),{n,40}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=(4^n-3^n-2^n+1)/2 \\ Charles R Greathouse IV, Jul 25 2011
  • Sage
    [(4^n - 2^n)/2-(3^n - 1)/2 for n in range(1,24)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2) * (4^n - 3^n - 2^n + 1).
a(n) = 3*Stirling2(n+1,4) + 2*Stirling2(n+1,3). - Ross La Haye, Jan 10 2008
a(n) = A006516(n) - A003462(n). - Zerinvary Lajos, Jun 05 2009
From Harvey P. Dale, May 11 2011: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4); a(0)=0, a(1)=2, a(2)=15, a(3)=80.
G.f.: x^2*(2-5*x)/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4). (End)
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 1)/2. - Stefano Spezia, Jun 26 2022

A051181 Number of 4-element intersecting families of an n-element set.

Original entry on oeis.org

0, 0, 0, 4, 365, 11770, 278455, 5715094, 108498285, 1963243930, 34404675635, 589459538734, 9933916068505, 165358097339890, 2726894329246815, 44648990949187174, 727080119853611525, 11790570902483264650, 190587735542474633995, 3073193346666282232414
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1/4! (16^n - 6*12^n + 12*10^n - 9^n - 22*8^n + 15*7^n + 12*6^n - 17*5^n + 17*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{83,-3052,65670,-919413,8804499,-58966886,277278100,-904270136,1982352768,-2749917312,2142305280,-696729600},{0,0,0,4,365,11770,278455,5715094,108498285,1963243930,34404675635,589459538734},20] (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    for(n=0,25, print1((1/4!)*(16^n-6*12^n+12*10^n-9^n-22*8^n+15*7^n +12*6^n-17*5^n+17*4^n-11*3^n-6*2^n+6), ", ")) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = (1/4!)*(16^n - 6*12^n + 12*10^n - 9^n - 22*8^n + 15*7^n + 12*6^n - 17*5^n + 17*4^n - 11*3^n - 6*2^n + 6).
G.f.: -x^3*(64667520*x^8 - 81966960*x^7 + 42070268*x^6 - 11421992*x^5 + 1766529*x^4 - 152845*x^3 + 6317*x^2 - 33*x - 4)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(12*x-1)*(16*x-1)). - Colin Barker, Jul 30 2012

Extensions

More terms from Harvey P. Dale, Jul 04 2019

A051184 Number of 7-element intersecting families of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 80, 169125, 71102400, 18047221707, 3623784887164, 638772147728325, 103751227132038920, 15931275037246743999, 2348130220089143792148, 335520750110815538499945, 46803828588394634589433120
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Formula

1/7! (128^n - 21*96^n + 105*80^n - 35*72^n + 105*68^n - 42*66^n + 7*65^n - 476*64^n - 630*60^n + 1785*56^n + 315*54^n - 210*52^n - 105*51^n + 1260*50^n - 105*49^n - 1575*48^n - 2520*46^n - 105*45^n + 1638*44^n + 840*43^n - 6615*42^n + 1050*41^n + 4130*40^n - 1890*39^n + 14595*38^n + 2835*37^n - 7945*36^n - 1554*35^n - 18711*34^n - 12572*33^n + 24710*32^n + 4620*31^n + 560*30^n + 25995*29^n - 16905*28^n - 13545*27^n - 6510*26^n - 42945*25^n + 12005*24^n + 102011*23^n - 4648*22^n - 87780*21^n - 15785*20^n + 43120*19^n + 21364*18^n + 4200*17^n - 37205*16^n - 17105*15^n + 36386*14^n + 28644*13^n - 57603*12^n + 24150*11^n + 4585*10^n - 16289*9^n + 20943*8^n - 12754*7^n - 287*6^n + 4137*5^n - 3388*4^n + 1764*3^n + 720*2^n - 720)

A051182 Number of 5-element intersecting families of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 371, 38163, 2236504, 103998636, 4289058501, 164693276181, 6034793020298, 213993130915542, 7407880110115111, 251837583669470799, 8443568934653875932, 280082506996725346368
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Formula

1/5!(32^n-10*24^n+30*20^n-5*18^n+5*17^n-80*16^n-30*15^n+135*14^n+30*13^n-80*12^n-2*11^n+10*10^n-100*9^n+240*8^n-160*7^n-44*6^n+95*5^n-85*4^n+50*3^n+24*2^n-24).

A051183 Number of 6-element intersecting families of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 230, 91993, 14037879, 1509286261, 136653987232, 11209147489701, 862949794999193, 63573922606869037, 4535012297248660194, 315713834759742768349, 21570075957885603579067
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Formula

1/6! (64^n - 15*48^n + 60*40^n - 15*36^n + 30*34^n - 6*33^n - 215*32^n - 180*30^n + 585*28^n + 45*27^n + 60*26^n + 150*25^n - 510*24^n - 360*23^n + 168*22^n - 585*21^n + 795*20^n + 1665*19^n - 1890*18^n - 2175*17^n + 3305*16^n + 1775*15^n - 3795*14^n - 870*13^n + 3123*12^n - 1075*11^n - 495*10^n + 1460*9^n - 2245*8^n + 1424*7^n + 150*6^n - 590*5^n + 499*4^n - 274*3^n - 120*2^n + 120)

A053155 Number of 3-element intersecting families (with not necessarily distinct sets) of an n-element set.

Original entry on oeis.org

0, 1, 7, 50, 397, 3366, 29197, 253030, 2170357, 18385046, 153927037, 1275981510, 10492253317, 85727548726, 696964520077, 5644579061990, 45579645264277, 367223771048406, 2953549834748317, 23724145930814470, 190373553357763237
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Feb 28 2000

Keywords

Crossrefs

Cf. A051180.

Programs

  • Magma
    [(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6: n in [0..50]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A053155:=n->(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6: seq(A053155(n), n=0..30); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    Table[(8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6, {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{29, -343, 2135, -7504, 14756, -14832, 5760}, {0, 1, 7, 50, 397, 3366, 29197}, 30] (* Vincenzo Librandi, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6, ", ")) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = (8^n - 3*6^n + 3*5^n + 2*4^n - 3*3^n + 2*2^n - 2)/6.
G.f.: x*(1224*x^5-1562*x^4+787*x^3-190*x^2+22*x-1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Jul 29 2012
a(n) = 29*a(n-1) - 343*a(n-2) + 2135*a(n-3) - 7504*a(n-4) + 14756*a(n-5) - 14832*a(n-6) + 5760*a(n-7) for n > 6. - Wesley Ivan Hurt, Oct 06 2017

A055484 Number of unlabeled 3-element intersecting families (with not necessarily distinct sets) of an n-element set.

Original entry on oeis.org

1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668, 24716, 35879, 51104, 71549, 98625, 134025, 179782, 238292, 312386, 405368, 521083, 663968, 839140, 1052439, 1310534, 1620985, 1992343, 2434229, 2957458, 3574108
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 03 2000

Keywords

Crossrefs

Cf. A053155 (labeled case), A005783, A002727, A051180.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,14,39,96,213,437,837,1520,2632,4380,7040,10979,16668},40] (* Harvey P. Dale, Jun 10 2024 *)
  • PARI
    x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017

Formula

G.f.: -x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from James Sellers, Jul 04 2000

A055485 Number of unlabeled 3-element intersecting families (with distinct sets) of an n-element set.

Original entry on oeis.org

4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295, 132485, 178011, 236268, 310086, 402768, 518158, 660692, 835486, 1048379, 1306039, 1616025, 1986887, 2428245, 2950913, 3566968, 4289896
Offset: 3

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 03 2000

Keywords

Crossrefs

Cf. A051180 (labeled case), A005783.

Programs

  • Mathematica
    Rest[Rest[Rest[CoefficientList[Series[-x^3*(x^8 + x^7 - 3*x^6 - x^5 + x^4 + 3*x^3 - x^2 - 3*x - 4)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x,0,50}], x]]]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{3, 1, -9, 0, 12, 7, -15, -16, 16, 15, -7, -12, 0, 9, -1, -3, 1}, {4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); Vec(-x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017

Formula

G.f.: -x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from James Sellers, Jul 04 2000

A053153 Number of 3-element intersecting families whose union is an n-element set.

Original entry on oeis.org

0, 0, 13, 170, 1605, 13390, 104993, 794010, 5867245, 42681830, 307120473, 2192847250, 15570312485, 110116458270, 776528783953, 5464646634890, 38398786511325, 269529019274710, 1890415785439433, 13251574765596930
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Feb 28 2000

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Cf. A051180.

Programs

  • Magma
    [(7^n -3*5^n +3*4^n -4*3^n +3*2^n +2)/6: n in [1..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    LinearRecurrence[{22,-190,820,-1849,2038,-840},{0,0,13,170,1605,13390}, 20] (* Harvey P. Dale, Aug 16 2015 *)
  • PARI
    for(n=1,25, print1((7^n -3*5^n +3*4^n -4*3^n +3*2^n +2)/6, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = 1/3!*(7^n -3*5^n +3*4^n -4*3^n +3*2^n +2).
G.f. -x^3*(280*x^3 -335*x^2 +116*x -13)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Jul 29 2012

Extensions

More terms from James Sellers, Mar 01 2000
Showing 1-10 of 18 results. Next