cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A036239 Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.

Original entry on oeis.org

0, 2, 15, 80, 375, 1652, 7035, 29360, 120975, 494252, 2007555, 8120840, 32753175, 131818052, 529680075, 2125927520, 8525298975, 34165897052, 136857560595, 548011897400, 2193792030375, 8780400395252, 35137296305115, 140596265198480
Offset: 1

Views

Author

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008
Graph theory formulation. Let P(A) be the power set of an n-element set A. Then a(n) = the number of edges in the intersection graph G of P(A). The vertices of G are the elements of P(A) and the edges of G are the pairs of elements {x,y} of P(A) such that x and y are intersecting (and x <> y). - Ross La Haye, Dec 23 2017

References

  • W. W. Kokko, "Interactions", manuscript, 1983.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,2,15,80},40] (* or *) With[{c=1/2!}, Table[ c(4^n-3^n-2^n+1),{n,40}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=(4^n-3^n-2^n+1)/2 \\ Charles R Greathouse IV, Jul 25 2011
  • Sage
    [(4^n - 2^n)/2-(3^n - 1)/2 for n in range(1,24)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2) * (4^n - 3^n - 2^n + 1).
a(n) = 3*Stirling2(n+1,4) + 2*Stirling2(n+1,3). - Ross La Haye, Jan 10 2008
a(n) = A006516(n) - A003462(n). - Zerinvary Lajos, Jun 05 2009
From Harvey P. Dale, May 11 2011: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4); a(0)=0, a(1)=2, a(2)=15, a(3)=80.
G.f.: x^2*(2-5*x)/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4). (End)
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 1)/2. - Stefano Spezia, Jun 26 2022

A005530 Number of Boolean functions of n variables from Post class F(8,inf); number of degenerate Boolean functions of n variables.

Original entry on oeis.org

2, 6, 38, 942, 325262, 25768825638, 129127208425774833206, 2722258935367507707190488025630791841374
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 129.

Crossrefs

a(n) = 2^(2^n) - A000371(n). Cf. A036239, A036240.

Programs

  • Mathematica
    Sum[(-1)^(j + 1) Binomial[n, j] 2^2^(n - j), {j, 1, n}]
  • PARI
    for(n=1,10, print1(sum(j=1,n, (-1)^(j+1)*binomial(n,j)*2^(2^(n-j))), ", ")) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = Sum_{j=1..n} (-1)^(j+1)*binomial(n,j)*2^(2^(n-j)).

Extensions

More terms from Vladeta Jovovic, Goran Kilibarda

A051375 Number of Boolean functions of n variables and rank 3 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 9, 66, 345, 1590, 6909, 29106, 120465, 493230, 2005509, 8116746, 32744985, 131801670, 529647309, 2125861986, 8525167905, 34165634910, 136857036309, 548010848826, 2193789933225, 8780396200950, 35137287916509
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Cf. A036240.

Programs

  • Magma
    [(4^n - 3^n - 3*2^n + 5)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(4^n - 3^n - 3*2^n + 5)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((4^n - 3^n - 3*2^n + 5)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036239(n) - A000918(n).
a(n) = (4^n - 3^n - 3*2^n + 5)/2.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1) (with k=3).
Also: 1/(k-1)!*Sum(s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), j=1..k), where s(k, j) are Stirling numbers of the first kind (with k=3).
From Colin Barker, Jun 25 2012: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
G.f.: 3*x^3*(3-8*x)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). (End)

Extensions

More terms from James Sellers

A051376 Number of Boolean functions of n variables and rank 4 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 3, 134, 1935, 20830, 198303, 1776894, 15402495, 130890110, 1098087903, 9130126654, 75412301055, 619706950590, 5071742430303, 41369422556414, 336511166127615, 2730929153686270, 22119108433729503, 178853777028618174
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=1,50, print1((8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036240(n) - A036239(n) + A000918(n).
a(n) = (8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1), where k=4.
Also: 1/(k-1)!*Sum_{j=1..k} s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), where s(k, j) are Stirling numbers of the first kind (and k=4).
G.f.: x^3*(3 + 59*x - 692*x^2 + 1344*x^3) / ( (x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(7*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

More terms from James Sellers

A051381 Number of Boolean functions of n variables from Post class F(5,inf).

Original entry on oeis.org

1, 3, 19, 471, 162631, 12884412819, 64563604212887416603, 1361129467683753853595244012815395920687, 521064401567922879406069432539095585333589848390805645835993148352662477920015
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Cf. A036239, A036240. Equals A005530(n)/2.

Programs

  • Mathematica
    Table[Sum[(-1)^(j + 1)*Binomial[n, j]*2^(2^(n - j) - 1) , {j, 1, n}], {n, 1, 5}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*2^(2^(n-j)-1).

Extensions

More terms from James Sellers
Showing 1-5 of 5 results.