cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A036239 Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.

Original entry on oeis.org

0, 2, 15, 80, 375, 1652, 7035, 29360, 120975, 494252, 2007555, 8120840, 32753175, 131818052, 529680075, 2125927520, 8525298975, 34165897052, 136857560595, 548011897400, 2193792030375, 8780400395252, 35137296305115, 140596265198480
Offset: 1

Views

Author

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008
Graph theory formulation. Let P(A) be the power set of an n-element set A. Then a(n) = the number of edges in the intersection graph G of P(A). The vertices of G are the elements of P(A) and the edges of G are the pairs of elements {x,y} of P(A) such that x and y are intersecting (and x <> y). - Ross La Haye, Dec 23 2017

References

  • W. W. Kokko, "Interactions", manuscript, 1983.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,2,15,80},40] (* or *) With[{c=1/2!}, Table[ c(4^n-3^n-2^n+1),{n,40}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=(4^n-3^n-2^n+1)/2 \\ Charles R Greathouse IV, Jul 25 2011
  • Sage
    [(4^n - 2^n)/2-(3^n - 1)/2 for n in range(1,24)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2) * (4^n - 3^n - 2^n + 1).
a(n) = 3*Stirling2(n+1,4) + 2*Stirling2(n+1,3). - Ross La Haye, Jan 10 2008
a(n) = A006516(n) - A003462(n). - Zerinvary Lajos, Jun 05 2009
From Harvey P. Dale, May 11 2011: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4); a(0)=0, a(1)=2, a(2)=15, a(3)=80.
G.f.: x^2*(2-5*x)/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4). (End)
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 1)/2. - Stefano Spezia, Jun 26 2022

A016304 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)).

Original entry on oeis.org

1, 15, 157, 1419, 11869, 94731, 733069, 5551323, 41378557, 304766187, 2224062061, 16112628987, 116053574365, 831966057483, 5941308640333, 42294437942811, 300292730428093, 2127439102098219, 15044413649559085
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 15 else n eq 3 select 157 else 15*Self(n-1)-68*Self(n-2) +84*Self(n-3): n in [1..20] ]; // Vincenzo Librandi, Aug 25 2011
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -68, 84}, {1, 15, 157}, 30]
  • PARI
    Vec(1/((1-2*x)*(1-6*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(7^n - 2^n)/5-(6^n - 2^n)/4 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (7^(n+2) - 2^(n+2))/5-(6^(n+2) - 2^(n+2))/4. - Zerinvary Lajos, Jun 05 2009 [corrected by Joerg Arndt, Aug 25 2011]
From Vincenzo Librandi, Aug 25 2011: (Start)
a(n) = 15*a(n-1) - 68*a(n-2) + 84*a(n-3) for n > 2;
a(n) = 13*a(n-1) - 42*a(n-2) + 2^n for n > 1. (End)
E.g.f.: exp(2*x)*(1 - 45*exp(4*x) + 49*exp(5*x))/5. - Stefano Spezia, Aug 25 2025

A016282 Expansion of 1/((1-2*x)*(1-4*x)*(1-5*x)).

Original entry on oeis.org

1, 11, 83, 535, 3171, 17871, 97483, 520055, 2731091, 14179231, 72992283, 373347975, 1900290211, 9635660591, 48715157483, 245723238295, 1237206060531, 6220389909951, 31239388241083, 156746696495015, 785932504682051, 3938458614335311, 19727477439571083
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 1/((1 - 2x)(1 - 4x)(1 - 5x)), {x, 0, 20} ], x ]
    LinearRecurrence[{11,-38,40},{1,11,83},30] (* Harvey P. Dale, Nov 29 2022 *)
  • PARI
    Vec(1/((1-2*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(5^n - 2^n)/3-(4^n - 2^n)/2 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (2/3)*2^n - 8*(4)^n + (25/3)*5^n. - Antonio Alberto Olivares, May 12 2012

A016295 Expansion of 1/((1-2x)(1-5x)(1-6x)).

Original entry on oeis.org

1, 13, 117, 905, 6461, 43953, 289717, 1868425, 11861421, 74423393, 462815717, 2858273145, 17556537181, 107373722833, 654414852117, 3977351721065, 24118423433741, 145982106270273, 882250466222917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-52,60},{1,13,117},20] (* Harvey P. Dale, Mar 26 2016 *)
  • Sage
    [(6^n - 2^n)/4-(5^n - 2^n)/3 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009

Formula

a(n) = A016129(n+1) - A016127(n+1). - Zerinvary Lajos, Jun 05 2009
a(n) = 13*a(n-1) - 52*a(n-2) + 60*a(n-3), n >= 3.
a(n) = 11*a(n-1) - 30*a(n-2) + 2^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 7*a(n-1) - 10*a(n-2) + 6^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = 8*a(n-1) - 12*a(n-2) + 5^n, n >= 2. - Vincenzo Librandi, Mar 16 2011
a(n) = -5^(n+2)/3 + 9*6^n + 2^n/3. - R. J. Mathar, Mar 18 2011

A016633 Expansion of g.f. 1/((1-2*x)*(1-11*x)*(1-12*x)).

Original entry on oeis.org

1, 25, 447, 6989, 101759, 1417941, 19180519, 253983853, 3309800367, 42599540357, 542895780791, 6863463633117, 86197420501375, 1076563471968373, 13382900349107463, 165700329729679181, 2044564737700501583, 25152545442794015589, 308625999807796411735, 3778261997130507936445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(648*12^n +2^(n+1)-5*11^(n+2))/45 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1 - 2 x) (1 - 11 x) (1 - 12 x)), {x, 0, 15}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • PARI
    Vec(1/((1-2*x)*(1-11*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(12^n - 2^n)/10-(11^n - 2^n)/9 for n in range(2,18)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Vincenzo Librandi, Oct 09 2011: (Start)
a(n) = (648*12^n + 2^(n+1) - 5*11^(n+2))/45.
a(n) = 23*a(n-1) - 132*a(n-2) + 2^n.
a(n) = 25*a(n-1) - 178*a(n-2) + 264*a(n-3), n >= 3. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(2*x)*(648*exp(10*x) - 605*exp(9*x) + 2)/45.
a(n) = A016136(n+1) - A016135(n+1). (End)

A025992 Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)).

Original entry on oeis.org

1, 22, 313, 3666, 38493, 377286, 3529681, 31947322, 282198565, 2447183310, 20920905369, 176852694018, 1481626607917, 12322682753494, 101879323774177, 838170485025354, 6867569457133749, 56077266261254238
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, May 09 2013: (Start)
a(n) - 2*a(n-1), for n>0, gives A019928 (after 1);
a(n) - 5*a(n-1), for n>0, gives A016311 (after 1);
a(n) - 7*a(n-1), for n>0, gives A016297 (after 1);
a(n) - 8*a(n-1), for n>0, gives A016296 (after 1);
a(n) - 7*a(n-1) + 10*a(n-2), for n>1, gives A016177 (after 15);
a(n) - 9*a(n-1) + 14*a(n-2), for n>1, gives A016162 (after 13);
a(n) - 10*a(n-1) + 16*a(n-2), for n>1, gives A016161 (after 12);
a(n) - 12*a(n-1) + 35*a(n-2), for n>1, gives A016131 (after 10);
a(n) - 13*a(n-1) + 40*a(n-2), for n>1, gives A016130 (after 9);
a(n) - 15*a(n-1) + 56*a(n-2), for n>1, gives A016127 (after 7);
a(n) - 20*a(n-1) +131*a(n-2) -280*a(n-3), for n>2, gives A000079 (after 4);
a(n) - 17*a(n-1) +86*a(n-2) -112*a(n-3), for n>2, gives A000351 (after 25);
a(n) - 15*a(n-1) +66*a(n-2) -80*a(n-3), for n>2, gives A000420 (after 49);
a(n) - 14*a(n-1) +59*a(n-2) -70*a(n-3), for n>2, gives A001018 (after 64),
and naturally: a(n) - 22*a(n-1) + 171*a(n-2) - 542*a(n-3) + 560*a(n-4), for n>3, gives 0 (see Harvey P. Dale in Formula lines). (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)))); // Bruno Berselli, May 09 2013
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-5x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {22,-171,542,-560},{1,22,313,3666},30] (* Harvey P. Dale, Jan 29 2013 *)
  • PARI
    a(n) = n+=3; (5*8^n-9*7^n+5*5^n-2^n)/90 \\ Charles R Greathouse IV, Oct 03 2016
    
  • Python
    def A025992(n): return (5*pow(8,n+3)-9*pow(7,n+3)+pow(5,n+4)-pow(2,n+3))//90
    print([A025992(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024

Formula

a(0)=1, a(1)=22, a(2)=313, a(3)=3666, a(n) = 22*a(n-1) - 171*a(n-2) + 542*a(n-3) - 560*a(n-4). - Harvey P. Dale, Jan 29 2013
a(n) = (5*8^(n+3) - 9*7^(n+3) + 5^(n+4) - 2^(n+3))/90. - Yahia Kahloune, May 07 2013
E.g.f.: (1/90)*(-8*exp(2*x) + 625*exp(5*x) - 3087*exp(7*x) + 2560*exp(8*x)). - G. C. Greubel, Dec 27 2024
Showing 1-6 of 6 results.