A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A113249
Corresponds to m = 3 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(n-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 11, 1, 59, 484, -1009, 6241, -2761, 13924, 87251, 57121, 49139, 4072324, -7165609, 35058241, 10350959, 30492484, 559712411, 973502401, -1957852501, 30450948004, -41421000289, 174055005601, 241428053159, 9658565284, 2872244917091, 11300885699041, -25300162140061
Offset: 0
a(3, 13) = 93161710957356599364/((-2+i*sqrt(5))^14*(2+i*sqrt(5))^14) = 4072324 = 2^2*1009^2.
-
f:= gfun:-rectoproc({a(n) = 81*a(n-4)+36*a(n-3)-4*a(n-1),a(0) = -1, a(1) = 4, a(2) = 11, a(3) = 1},a(n),remember):
map(f, [$0..30]); # Robert Israel, Oct 23 2017
-
LinearRecurrence[{-4, 0, 36, 81}, {-1, 4, 11, 1}, 29] (* Jean-François Alcover, Sep 25 2017 *)
-
Vec(-(1 - 27*x^2 - 81*x^3) / ((1 - 3*x)*(1 + 3*x)*(1 + 4*x + 9*x^2)) + O(x^30)) \\ Colin Barker, May 19 2019
A176333
Expansion of (1-3*x)/(1-4*x+9*x^2).
Original entry on oeis.org
1, 1, -5, -29, -71, -23, 547, 2395, 4657, -2927, -53621, -188141, -269975, 613369, 4883251, 14012683, 12101473, -77708255, -419746277, -979610813, -140726759, 8253590281, 34280901955, 62841295291, -57162936431, -794223403343, -2662427185493, -3501698111885
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2097
- Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-9).
-
a:=[1,1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019
-
I:=[1,1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019
-
seq(coeff(series((1-3*x)/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019
-
CoefficientList[Series[(1-3x)/(1-4x+9x^2),{x,0,30}],x] (* or *) LinearRecurrence[{4,-9},{1,1},30] (* Harvey P. Dale, Sep 17 2012 *)
-
my(x='x+O('x^30)); Vec((1-3*x)/(1-4*x+9*x^2)) \\ G. C. Greubel, Dec 07 2019
-
def A176333_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-3*x)/(1-4*x+9*x^2) ).list()
A176333_list(30) # G. C. Greubel, Dec 07 2019
Showing 1-3 of 3 results.
Comments