cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105852 a(n) = sigma(n) mod 9.

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 6, 4, 0, 3, 1, 5, 6, 6, 4, 0, 3, 2, 6, 5, 0, 6, 6, 4, 6, 4, 2, 3, 0, 5, 0, 3, 0, 3, 1, 2, 6, 2, 0, 6, 6, 8, 3, 6, 0, 3, 7, 3, 3, 0, 8, 0, 3, 0, 3, 8, 0, 6, 6, 8, 6, 5, 1, 3, 0, 5, 0, 6, 0, 0, 6, 2, 6, 7, 5, 6, 6, 8, 6, 4, 0, 3, 8, 0, 6, 3, 0, 0, 0, 4, 6, 2, 0, 3, 0, 8, 0, 3, 1, 3, 0, 5, 3, 3
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Comments

If gcd(m,n) = 1 then a(m*n) = (a(m) * a(n)) mod 9. - Robert Israel, Sep 14 2014

Crossrefs

Cf. A000203, A010878, A190998 (digital root of sigma(n)).

Programs

  • Maple
    seq(numtheory:-sigma(n) mod 9, n=1..1000); # Robert Israel, Sep 14 2014
  • Mathematica
    Mod[DivisorSigma[1, Range[100]], 9] (* Wesley Ivan Hurt, Apr 25 2023 *)
  • PARI
    a(n)=sigma(n)%9

Formula

a(n) = A010878(A000203(n)). - Michel Marcus, Sep 14 2014

Extensions

Name corrected and keyword base removed by Michel Marcus, Sep 14 2014

A231817 Multiplicative digital root of concatenation of all divisors of n (A037278).

Original entry on oeis.org

1, 2, 3, 8, 5, 8, 7, 8, 4, 0, 1, 6, 3, 0, 5, 0, 7, 0, 9, 0, 8, 8, 6, 8, 0, 4, 6, 0, 8, 0, 3, 0, 4, 6, 0, 0, 2, 8, 8, 0, 4, 0, 2, 0, 0, 6, 6, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 4, 0, 0, 0, 0, 8, 0, 2, 0, 7, 0, 2, 8, 0, 0, 8, 0, 8, 0, 0, 6, 8, 0, 0, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2013

Keywords

Comments

Also multiplicative digital root of A190997 (product of digits of all the divisors of n) or A007955 (product of divisors of n).
Conjecture: a(n) = 0 for almost all n.
793 of the first 1000 terms are zeros, and 9147 out of the first 10000 terms are zeros. - Harvey P. Dale, Jul 30 2019

Examples

			For n=12: 1*2*3*4*6*1*2=288, 2*8*8=128, 1*2*8=16, 1*6=6; a(12)=6.
		

Crossrefs

Cf. A037278, A007955, A190998 (associative digital root of digits of all the divisors of n), A031347 (multiplicative digital root of n).

Programs

  • Mathematica
    Table[NestWhile[Times@@IntegerDigits[#]&,Times@@Flatten[ IntegerDigits/@ Divisors[ n]], #>9&],{n,90}] (* Harvey P. Dale, Jul 30 2019 *)

A240597 Numbers k such that sigma(k) == k (mod 9).

Original entry on oeis.org

1, 15, 24, 42, 60, 64, 69, 78, 90, 100, 114, 123, 133, 147, 153, 177, 186, 198, 222, 231, 240, 258, 259, 270, 276, 288, 289, 306, 339, 360, 366, 393, 402, 403, 414, 429, 438, 447, 459, 474, 477, 492, 495, 501, 507, 511, 522, 582, 588, 594, 600
Offset: 1

Views

Author

Ivan N. Ianakiev, Sep 13 2014

Keywords

Comments

That is, numbers k that satisfy the following:
A010878(k) = A105852(k) or A010878(k) = A010878(A000203(k)).
A010888(k) = A190998(k) or A010888(k) = A010888(A000203(k)).

Examples

			sigma(15) = 24. 24 == 15 (mod 9), therefore 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Mod[#,9]==Mod[DivisorSigma[1,#],9]&]

Formula

A010888(a(n)) = A010888(A000203(a(n))).
A010888(a(n)) = A190998(a(n)).

A316570 Multiplicative digital root of sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 5, 3, 8, 2, 6, 4, 8, 8, 3, 8, 4, 0, 8, 6, 8, 8, 0, 3, 8, 0, 0, 0, 4, 6, 8, 6, 0, 6, 9, 8, 0, 0, 0, 8, 0, 6, 6, 0, 4, 6, 8, 5, 4, 4, 4, 0, 0, 4, 0, 0, 0, 0, 6, 2, 0, 0, 4, 6, 6, 6, 2, 0, 6, 4, 0, 6, 4, 8, 0, 0, 6, 0, 6, 2, 2, 6, 6, 0, 6, 0
Offset: 1

Views

Author

Jaroslav Krizek, Jul 07 2018

Keywords

Comments

Multiplicative digital root of A000203(n).

Examples

			For n = 12: sigma(12) = 28; a(n) = 6 because 2 * 8 = 16; 1 * 6 = 6.
		

Crossrefs

Cf. A190998 (additive digital root of sigma(n)).

Programs

  • Maple
    m:= n-> `if`(n<10, n, m(mul(d, d=convert(n, base, 10)))):
    a:= n-> m(numtheory[sigma](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 21 2018
  • PARI
    a031347(n) = while(n>9, n=prod(i=1, #n=digits(n), n[i])); n;
    a(n) = a031347(sigma(n)); \\ Michel Marcus, Jul 07 2018

Formula

a(n) = A031347(A000203(n)).
Showing 1-4 of 4 results.