cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056788 a(n) = n^n + (n-1)^(n-1).

Original entry on oeis.org

2, 5, 31, 283, 3381, 49781, 870199, 17600759, 404197705, 10387420489, 295311670611, 9201412118867, 311791207040509, 11414881932150269, 449005897206417391, 18884637964090410991, 845687005960046315793, 40173648337182874339601, 2017766063735610126699403
Offset: 1

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Comments

For even n > 1, the absolute value of the discriminant of the polynomial x^n+x-1. [Corrected by Artur Jasinski, May 07 2010]
The largest known prime in this sequence is a(4) = 283.

Examples

			a(3) = 2^2 + 3^3 = 4 + 27 = 31.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Cf. A000312 (n^n), A086797 (discriminant of the polynomial x^n-x-1).
Cf. A056187, A056790, A192397 (smallest & largest prime factor of a(n), records of the latter), A217435 = bigomega(a(n)).

Programs

  • Mathematica
    Join[{2}, Table[n^n+(n-1)^(n-1), {n, 2, 20}]] (* T. D. Noe, Aug 13 2004 *)
    Join[{2},Total/@Partition[Table[n^n,{n,20}],2,1]] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    A056788(n)=n^n+(n-1)^(n-1)  \\ M. F. Hasler, Oct 02 2012

Extensions

Minor corrections by M. F. Hasler, Oct 02 2012

A056790 Greatest prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 23, 743, 331, 1600069, 410353, 60042893, 8969, 7438489991, 116803, 4879633159, 61215157711, 338142271, 34041259347101651, 45072130459, 6564253087266573169, 22022174223585405703, 121937899012999, 69454092876521107983605569601, 5311242856728321929909
Offset: 0

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Comments

Note that n^n + (n+1)^(n+1) = A056788(n+1).
Becomes "hard" (unknown) around n ~ 112, cf. link: As of today, even A217435(113) (number of prime factors) is unknown. - M. F. Hasler, Oct 04 2012
As of today, the first unknown term is a(143). - Daniel Suteu, Mar 11 2019

Examples

			a(4) = 23 because 4^4 + 5^5 = 3381 = 3 * 7^2 * 23.
		

Crossrefs

Programs

  • Mathematica
    Join[{2},FactorInteger[Total[#]][[-1,1]]&/@Partition[Table[n^n,{n,30}],2,1]] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    A056790(n)=vecmax(factor((n+1)^(n+1)+n^n)[,1])  \\ M. F. Hasler, Oct 04 2012

Formula

a(n) = A006530(A056788(n+1)). - M. F. Hasler, Oct 04 2012

Extensions

a(0) = 2 added by Arkadiusz Wesolowski, Jun 30 2011
a(21)-a(22) added by Daniel Suteu, Mar 11 2019

A056187 Least prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 3, 67, 11, 11, 5, 173, 3, 1237, 7, 31, 7334881, 227, 3, 773, 149, 47, 11, 5, 3, 101, 13, 73, 151, 349, 3, 4421, 107, 191, 17, 7, 3, 17, 19, 624808693, 2273, 25788481, 3, 5, 59, 1752761753, 23, 2144707, 3, 49547, 5, 275851515609829434269, 19, 919, 3, 13, 7, 107, 29
Offset: 0

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Examples

			a(5) = 67 because 5^5 + 6^6 = 3125 + 46656 = 67 * 743.
		

Crossrefs

Programs

Formula

a(n) = A020639(A056788(n+1)). - M. F. Hasler, Oct 04 2012

Extensions

2 added by Arkadiusz Wesolowski, Jun 30 2011
a(53)-a(56) from Chai Wah Wu, Jul 22 2019
Showing 1-3 of 3 results.