cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007571 a(n) = largest prime factor of n^n + 1.

Original entry on oeis.org

2, 5, 7, 257, 521, 97, 911, 673, 530713, 27961, 58367, 2227777, 79301, 176597, 142111, 67280421310721, 45957792327018709121, 33388093, 870542161121, 4406613081041681, 22864311556633, 73194743542229, 1522029233, 27250359649
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(n^n+1)):n in [1..24]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Table[ FactorInteger[ n^n + 1, FactorComplete -> True ] [ [ -1, 1 ] ], {n, 1, 25} ]
  • PARI
    for(k=1, 24, my(x=factor(k^k+1), f=x[#x[, 1], 1]); print1(f,", ")) \\ Hugo Pfoertner, Aug 23 2019
    

Formula

a(n) = A006530(A014566(n)). - Michel Marcus, Aug 24 2019

A056788 a(n) = n^n + (n-1)^(n-1).

Original entry on oeis.org

2, 5, 31, 283, 3381, 49781, 870199, 17600759, 404197705, 10387420489, 295311670611, 9201412118867, 311791207040509, 11414881932150269, 449005897206417391, 18884637964090410991, 845687005960046315793, 40173648337182874339601, 2017766063735610126699403
Offset: 1

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Comments

For even n > 1, the absolute value of the discriminant of the polynomial x^n+x-1. [Corrected by Artur Jasinski, May 07 2010]
The largest known prime in this sequence is a(4) = 283.

Examples

			a(3) = 2^2 + 3^3 = 4 + 27 = 31.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Cf. A000312 (n^n), A086797 (discriminant of the polynomial x^n-x-1).
Cf. A056187, A056790, A192397 (smallest & largest prime factor of a(n), records of the latter), A217435 = bigomega(a(n)).

Programs

  • Mathematica
    Join[{2}, Table[n^n+(n-1)^(n-1), {n, 2, 20}]] (* T. D. Noe, Aug 13 2004 *)
    Join[{2},Total/@Partition[Table[n^n,{n,20}],2,1]] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    A056788(n)=n^n+(n-1)^(n-1)  \\ M. F. Hasler, Oct 02 2012

Extensions

Minor corrections by M. F. Hasler, Oct 02 2012

A056187 Least prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 3, 67, 11, 11, 5, 173, 3, 1237, 7, 31, 7334881, 227, 3, 773, 149, 47, 11, 5, 3, 101, 13, 73, 151, 349, 3, 4421, 107, 191, 17, 7, 3, 17, 19, 624808693, 2273, 25788481, 3, 5, 59, 1752761753, 23, 2144707, 3, 49547, 5, 275851515609829434269, 19, 919, 3, 13, 7, 107, 29
Offset: 0

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Examples

			a(5) = 67 because 5^5 + 6^6 = 3125 + 46656 = 67 * 743.
		

Crossrefs

Programs

Formula

a(n) = A020639(A056788(n+1)). - M. F. Hasler, Oct 04 2012

Extensions

2 added by Arkadiusz Wesolowski, Jun 30 2011
a(53)-a(56) from Chai Wah Wu, Jul 22 2019

A192397 Record holders for greatest prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 743, 1600069, 60042893, 7438489991, 61215157711, 34041259347101651, 6564253087266573169, 22022174223585405703, 69454092876521107983605569601, 2360926164108571968813424783598971267, 462605180698333957063188362720170172617217, 14645575916792712592989131451003587034531413111, 214236369415820799335832514547376967536187180963
Offset: 1

Views

Author

Walter Nissen, Jun 29 2011

Keywords

Examples

			60042893 = A056790(9) is in the sequence because all earlier members of A056790 are smaller than 60042893.
		

Crossrefs

Programs

  • PARI
    fmax=0;for(k=0,35,my(x=factor(k^k+(k+1)^(k+1)),f=x[#x[,1],1]);if(f>fmax,print1(f,", ");fmax=f)) \\ Hugo Pfoertner, Aug 18 2019

Formula

A056790(m) < A056790(n), for all m < n

Extensions

2 added by Arkadiusz Wesolowski, Jun 30 2011

A309747 Numbers k such that k^k + (k+1)^(k+1) is a semiprime.

Original entry on oeis.org

5, 7, 9, 11, 14, 21, 37, 38, 39, 57, 90, 97, 162
Offset: 1

Views

Author

Hugo Pfoertner, Aug 15 2019

Keywords

Comments

Numbers k such that A217435(k+1) = 2.
a(14) >= 235, see FactorDB link.

Examples

			a(1) = 5 because 5^5 + 6^6 = 49781 = 67*743.
		

Crossrefs

Programs

  • PARI
    for(k=0,40,if(bigomega(k^k+(k+1)^(k+1))==2,print1(k,", ")))
Showing 1-5 of 5 results.