cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A097396 Duplicate of A056788.

Original entry on oeis.org

2, 5, 31, 283, 3381, 49781, 870199, 17600759, 404197705, 10387420489
Offset: 1

Views

Author

Keywords

A162928 Primes of the form A056788(k)-2.

Original entry on oeis.org

3, 29, 281, 870197, 311791207040507
Offset: 1

Views

Author

Keywords

Comments

The term a(6) has 291 digits.

Examples

			a(1)=A056788(2)-2=3. a(2)=A056788(3)-2=29, associated with k=2, 3, 4, 7, 13, 136,....
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=n^n+(n+1)^(n+1)-2; lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,f[n]]], {n,2*5!}];lst

Extensions

Edited by R. J. Mathar, Jul 19 2009

A056790 Greatest prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 23, 743, 331, 1600069, 410353, 60042893, 8969, 7438489991, 116803, 4879633159, 61215157711, 338142271, 34041259347101651, 45072130459, 6564253087266573169, 22022174223585405703, 121937899012999, 69454092876521107983605569601, 5311242856728321929909
Offset: 0

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Comments

Note that n^n + (n+1)^(n+1) = A056788(n+1).
Becomes "hard" (unknown) around n ~ 112, cf. link: As of today, even A217435(113) (number of prime factors) is unknown. - M. F. Hasler, Oct 04 2012
As of today, the first unknown term is a(143). - Daniel Suteu, Mar 11 2019

Examples

			a(4) = 23 because 4^4 + 5^5 = 3381 = 3 * 7^2 * 23.
		

Crossrefs

Programs

  • Mathematica
    Join[{2},FactorInteger[Total[#]][[-1,1]]&/@Partition[Table[n^n,{n,30}],2,1]] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    A056790(n)=vecmax(factor((n+1)^(n+1)+n^n)[,1])  \\ M. F. Hasler, Oct 04 2012

Formula

a(n) = A006530(A056788(n+1)). - M. F. Hasler, Oct 04 2012

Extensions

a(0) = 2 added by Arkadiusz Wesolowski, Jun 30 2011
a(21)-a(22) added by Daniel Suteu, Mar 11 2019

A056187 Least prime factor of n^n + (n+1)^(n+1).

Original entry on oeis.org

2, 5, 31, 283, 3, 67, 11, 11, 5, 173, 3, 1237, 7, 31, 7334881, 227, 3, 773, 149, 47, 11, 5, 3, 101, 13, 73, 151, 349, 3, 4421, 107, 191, 17, 7, 3, 17, 19, 624808693, 2273, 25788481, 3, 5, 59, 1752761753, 23, 2144707, 3, 49547, 5, 275851515609829434269, 19, 919, 3, 13, 7, 107, 29
Offset: 0

Views

Author

Walter Nissen, Aug 20 2000

Keywords

Examples

			a(5) = 67 because 5^5 + 6^6 = 3125 + 46656 = 67 * 743.
		

Crossrefs

Programs

Formula

a(n) = A020639(A056788(n+1)). - M. F. Hasler, Oct 04 2012

Extensions

2 added by Arkadiusz Wesolowski, Jun 30 2011
a(53)-a(56) from Chai Wah Wu, Jul 22 2019

A217435 Number of prime factors of n^n+(n-1)^(n-1), counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 2, 3, 2, 5, 2, 6, 4, 2, 3, 6, 3, 3, 4, 6, 2, 7, 3, 5, 5, 3, 3, 5, 3, 3, 3, 7, 4, 5, 4, 3, 2, 2, 2, 6, 3, 6, 4, 5, 3, 8, 6, 6, 3, 5, 5, 5, 5, 3, 3, 5, 2, 8, 4, 4, 6, 6, 6, 8, 8, 4, 3, 4, 7, 7, 6, 6, 4, 4, 7, 9, 6, 7, 5, 9, 5, 7, 4, 3, 5, 6, 7, 9, 3, 2, 5
Offset: 1

Views

Author

M. F. Hasler, Oct 02 2012

Keywords

Programs

  • Maple
    A217435:=n->numtheory[bigomega](n^n+(n-1)^(n-1)): seq(A217435(n), n=1..30); # Wesley Ivan Hurt, Jan 27 2017
  • Mathematica
    Join[{1}, Table[PrimeOmega[n^n + (n-1)^(n-1)], {n, 2, 30}]] (* Amiram Eldar, Feb 24 2020 *)
    Join[{1},PrimeOmega[Total/@Partition[#^#&/@Range[30],2,1]]] (* Harvey P. Dale, Oct 02 2021 *)
  • PARI
    for(n=1,999,print1(bigomega((n-1)^(n-1)+n^n)","))

Formula

a(n) = A001222(A056788(n)).

Extensions

Data beyond a(49) from W. Nissen's web site.

A086797 Discriminant of the polynomial x^n - x - 1.

Original entry on oeis.org

0, 5, -23, -283, 2869, 49781, -776887, -17600759, 370643273, 10387420489, -275311670611, -9201412118867, 293959006143997, 11414881932150269, -426781883555301359, -18884637964090410991, 808793517812627212561, 40173648337182874339601
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

Comments

Selmer proved that for all n the Galois group of the polynomial x^n - x - 1 over the rationals is the symmetric group S_n. [Comment corrected by Artur Jasinski, Feb 06 2007]

Crossrefs

Cf. A000312 (n^n), A007781 (n^n - (n-1)^(n-1)), A056788 (n^n + (n-1)^(n-1)).
Cf. A086783.

Programs

  • PARI
    a(n)=poldisc(x^n-x-1)

Formula

Except for the sign, the sequence alternates between the sum and difference of consecutive terms of A000312. a(n) = (n^n + (-1)^n (n-1)^(n-1))*(-1)^ceiling(1+n/2). - T. D. Noe, Aug 13 2004

Extensions

More terms from Benoit Cloitre, Aug 06 2003

A114654 Discriminant of the polynomial x^n + x + 1.

Original entry on oeis.org

1, -3, -31, 229, 3381, -43531, -870199, 15953673, 404197705, -9612579511, -295311670611, 8630788777645, 311791207040509, -10809131718965763, -449005897206417391, 18008850183328692241, 845687005960046315793, -38519167813410200811247
Offset: 1

Views

Author

T. D. Noe, Dec 21 2005

Keywords

Comments

Except for the sign, the sequence alternates between the sum and difference of consecutive terms of A000312. x^2+x+1 divides x^n+x+1 for n=2 (mod 3).

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

Crossrefs

Cf. A000312 (n^n), A007781 (n^n - (n-1)^(n-1)), A056788 (n^n + (n-1)^(n-1)), A086797 (discriminant of the polynomial x^n-x-1).

Programs

  • Mathematica
    Table[Discriminant[x^n + x + 1, x], {n, 0, 100}] (* Artur Jasinski, Oct 12 2007 *)
  • PARI
    a(n) = poldisc(x^n+x+1); \\ Michel Marcus, Aug 28 2020

Formula

for n>1, a(n) = (n^n + (-1)^(n-1) * (n-1)^(n-1)) * (-1)^floor(n/2).
a(n) = (Cos[Pi n/2]+Sin[Pi n/2])(n^n)+(Cos[Pi(n+1)/2]+Sin[Pi(n+1)/2])(n+1)^(n+1). - Artur Jasinski, Oct 12 2007

A162929 Primes of the form n^n+(n+1)^(n+1)+6.

Original entry on oeis.org

11, 37, 49787, 404197711
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A056788(k)+6, associated with k=2, 3, 6, 9, 126,...
The term a(5) has 265 digits.

Examples

			2^2+3^3+6=37.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=n^n+(n+1)^(n+1)+6; lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,f[n]]], {n,2*5!}];lst
    Select[Table[n^n+(n+1)^(n+1)+6,{n,500}],PrimeQ] (* Harvey P. Dale, Jan 30 2014 *)

Extensions

Edited by R. J. Mathar, Jul 19 2009

A309747 Numbers k such that k^k + (k+1)^(k+1) is a semiprime.

Original entry on oeis.org

5, 7, 9, 11, 14, 21, 37, 38, 39, 57, 90, 97, 162
Offset: 1

Views

Author

Hugo Pfoertner, Aug 15 2019

Keywords

Comments

Numbers k such that A217435(k+1) = 2.
a(14) >= 235, see FactorDB link.

Examples

			a(1) = 5 because 5^5 + 6^6 = 49781 = 67*743.
		

Crossrefs

Programs

  • PARI
    for(k=0,40,if(bigomega(k^k+(k+1)^(k+1))==2,print1(k,", ")))
Showing 1-9 of 9 results.