cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105479 a(n) = C(n,2)*Bell(n-2) (cf. A000217, A000110).

Original entry on oeis.org

0, 0, 1, 3, 12, 50, 225, 1092, 5684, 31572, 186300, 1163085, 7654350, 52928460, 383437327, 2902665885, 22907918640, 188082362120, 1603461748491, 14169892736484, 129594593170210, 1224875863061970, 11948280552370932, 120142063487658003, 1243853543811461148
Offset: 0

Views

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Comments

Number of blocks of size 2 in all set partitions of {1,2,...,n}. Example: a(3)=3 because the set partitions of {1,2,3} are 1|2|3, 1|23, 12|3, 13|2 and 123, containing exactly 3 blocks of size 2. a(n) = Sum_{k>=0} k*A124498(n-1,k). - Emeric Deutsch, Nov 06 2006
Number of partitions of {1...n} containing 2 pairs of consecutive integers, where each pair is counted within a block and a string of more than 2 consecutive integers are counted two at a time. E.g. a(4) = 3 because the partitions of {1,2,3,4} with 2 pairs of consecutive integers are 123/4,12/34,1/234. - Augustine O. Munagi, Apr 10 2005
a(n) is the total sum of singletons in all set partitions of [n-1]. a(4) = 12 = 0+1+2+3+6: 123, 1|23, 13|2, 12|3, 1|2|3. - Alois P. Heinz, Mar 06 2024

Crossrefs

Column k=2 of A193297.

Programs

  • Maple
    [seq(binomial(n,2)*combinat[bell](n-2),n=0..50)];
  • Mathematica
    Join[{0,0},Table[Binomial[n,2]BellB[n-2],{n,2,30}]] (* Harvey P. Dale, May 06 2014 *)
  • Python
    from itertools import count, accumulate, islice
    def A105479_gen(): # generator of terms
        yield from (0,0,1)
        blist, b, c = (1,), 1, 1
        for n in count(2):
            c += n
            blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b*c
    A105479_list = list(islice(A105479_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = binomial(n-1, 2)*Bell(n-3), the case r = 2 of the general case of r pairs: c(n, r) = binomial(n-1, r)*Bell(n-r-1).
E.g.f.: z^2/2 * e^(e^z-1) - Frank Ruskey, Dec 26 2006
G.f.: exp(-1)*Sum_{n>=0} (x^2/(n!*(1-n*x)^3)). - Vladeta Jovovic, Feb 05 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=2, a(n)=(-1)^(n-2)coeff(charpoly(A,x),x^2). - Milan Janjic, Jul 08 2010
G.f.: x^2/exp(1)*G(0), where G(k) = 1 + (2*k*x-1)^3/((2*k+1)*(2*k*x+x-1)^3 - (2*k+1)*(2*k*x+x-1)^6/((2*k*x+x-1)^3 + 2*(k+1)*(2*k*x+2*x-1)^3/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013

Extensions

Edited by N. J. A. Sloane, Jan 01 2007

A193274 a(n) = binomial(Bell(n), 2) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

0, 0, 1, 10, 105, 1326, 20503, 384126, 8567730, 223587231, 6725042325, 230228283165, 8877197732406, 382107434701266, 18221275474580181, 956287167902779240, 54916689705422813731, 3433293323775503064306, 232614384749689991763561, 17010440815323680947084096
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2011

Keywords

Crossrefs

Row sums of A193297.

Programs

  • Magma
    [Binomial(Bell(n),2): n in [0..20]]; // Vincenzo Librandi, Feb 17 2018
    
  • Maple
    a:= n-> binomial(combinat[bell](n), 2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 28 2011
  • Mathematica
    a[n_] := With[{b = BellB[n]}, b*(b-1)/2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 18 2014 *)
  • Python
    from itertools import accumulate, islice
    def A193274_gen(): # generator of terms
        yield 0
        blist, b = (1,), 1
        while True:
            blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b*(b-1)//2
    A193274_list = list(islice(A193274_gen(),30)) # Chai Wah Wu, Jun 22 2022

A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.

Original entry on oeis.org

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461, 157768581675, 6167103354744, 268758895112072, 12961171404183498, 687270616305277589, 39843719438374998543, 2512873126513271758171, 171643113190082528007702, 12647168303374365311984284
Offset: 0

Views

Author

David Pasino, Dec 06 2008, Dec 08 2008

Keywords

Examples

			From _Gus Wiseman_, Dec 09 2018: (Start)
The a(3) = 7 unordered pairs:
  {{1},{2},{3}}| {{1,2,3}}
   {{1},{2,3}} |{{1,2},{3}}
   {{1},{2,3}} |{{1,3},{2}}
   {{1,2},{3}} |{{1,3},{2}}
   {{1},{2,3}} | {{1,2,3}}
   {{1,2},{3}} | {{1,2,3}}
   {{1,3},{2}} | {{1,2,3}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*binomial(combinat[bell](k),2)*
            add(Stirling2(n-k,j)*(-1)^j, j=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 27 2018
  • Mathematica
    Array[Sum[Binomial[#, k] Sum[(-1)^j*StirlingS2[# - k, j], {j, 0, # - k}] Binomial[BellB@ k, 2], {k, 0, #}] &, 20, 0] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a000110(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
    a(n) = sum(k=0, n, binomial(n,k) * sum(j=0, n-k, (-1)^j*stirling(n-k,j, 2) * binomial(a000110(k),2))); \\ Michel Marcus, May 27 2018

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (Sum_{j=0..n-k} (-1)^j*A048993(n-k,j)) * binomial(A000110(k),2).
That is, summed on k from 0 to n, the number of k-element subsets of an n-element set, times the alternating sum of row n-k of Stirling2 numbers starting with +S(n-k, 0), times the number of pairs of partitions of k elements.
Obtained by inverting (binomial(A000110(n), 2)) = (Sum_{k=0..n} binomial(n,k)*A000110(n-k)*a(k)), which in turn is gotten by considering that a pair of conjoint partitions is gotten by choosing a partition of a subset and then choosing a pair of disjoint partitions of the complement.
Showing 1-3 of 3 results.