A159600
E.g.f. C(x) satisfies: C(x) = (1 - 2*S(x)^2)^(1/4), where S'(x) = C(x)^3 and C'(x) = -S(x) with C(0)=1.
Original entry on oeis.org
1, -1, 3, -27, 441, -11529, 442827, -23444883, 1636819569, -145703137041, 16106380394643, -2164638920874507, 347592265948756521, -65724760945840254489, 14454276753061349098587
Offset: 0
E.g.f.: C(x) = 1 - x^2/2! + 3*x^4/4! - 27*x^6/6! + 441*x^8/8! -+ ...
C(x)^2 = 1 - 2*x^2/2! + 12*x^4/4! - 144*x^6/6! + 3024*x^8/8! -+ ...
C(x)^3 = 1 - 3*x^2/2! + 27*x^4/4! - 441*x^6/6! + 11529*x^8/8! -+ ...
C(x)^4 = 1 - 4*x^2/2! + 48*x^4/4! - 1008*x^6/6! + 32256*x^8/8! -+ ...
C(x)^4 + 2*S(x)^2 = 1 where:
S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! + ...
S(x)^2 = 2*x^2/2! - 24*x^4/4! + 504*x^6/6! - 16128*x^8/8! +-...
From _Paul D. Hanna_, Jul 29 2011: (Start)
O.g.f.: 1 - x + 3*x^2 - 27*x^3 + 441*x^4 - 11529*x^5 + 442827*x^6 -+ ... + a(n)*x^n + ...
O.g.f.: 1/(1 + x/(1 + 2*x/(1 + 9*x/(1 + 8*x/(1 + 25*x/(1 + 18*x/(1 + 49*x/(1 + 32*x/(1-...))))))))) (continued fraction). (End)
-
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiCN[ x, 1/2], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, With[ {s = InverseSeries[ Integrate[ Series[(1 - x^4 / 4) ^ (-1/2), {x, 0, m + 1}], x]]}, m! SeriesCoefficient[ Sqrt[ (2 - s^2) / (2 + s^2)], {x, 0, m}]]]]; (* Michael Somos, Apr 25 2011 *)
-
{a(n)=local(S=x,C);for(i=0,2*n,S=intformal((1-2*S^2+O(x^(2*n+2)))^(3/4))); C=(1-2*S^2)^(1/4) ;(2*n)!*polcoeff(C,2*n)}
-
{a(n) = my(A, m); if( n<0, 0, m = 2*n; A = serreverse( intformal( (1 - x^4 / 4 + x * O(x^m)) ^ (-1/2))); m! * polcoeff( sqrt( (2 - A^2) / (2 + A^2)), m))}; /* Michael Somos, Apr 25 2011 */
-
{a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( C * intformal(-1/C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
for(n=0,20,print1(a(2*n),", "))
-
{a(n) = local(C=1+x); for(i=1,n, C = exp( intformal( -1/C * intformal(C^3 + x*O(x^n)) ) ) ); n!*polcoeff(C,n)}
for(n=0,20,print1(a(2*n),", "))
A193543
E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant.
Original entry on oeis.org
1, 1, 9, 153, 4977, 261009, 20039481, 2121958377, 296297348193, 52750142341281, 11662264481073129, 3134732109393169593, 1006734732695870345937, 380718482718134681818929, 167456229155543640166939161, 84761007600911799530893148937, 48919649166315485705652984573633
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
A(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...
Let B(x) equal the e.g.f. of A193540, where:
B(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...
explicitly,
B(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +...
then A(x)^-2 + B(x)^-2 = 2
as illustrated by:
A(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...
B(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...
...
O.g.f.: 1 + x + 9*x^2 + 153*x^3 + 4977*x^4 + 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +...
O.g.f.: 1/(1 - x/(1 - 8*x/(1 - 9*x/(1 - 32*x/(1 - 25*x/(1 - 72*x/(1 - 49*x/(1 - 128*x/(1-...))))))))).
-
nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2]*x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[(-1)^n * s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *)
-
{a(n)=local(L=2*(Pi/2)^(3/2)/gamma(3/4)^2);if(n==0,1,sqrt(2)*Pi/L*suminf(k=1,(2*k*Pi/L)^(2*n)/cosh(k*Pi)))} \\ Paul D. Hanna, Aug 29 2012
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1,cosh(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));
round((2*n)!*polcoeff(R,2*n))}
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1,1/(1 - (2*m*Pi/L)^2*x+x*O(x^n))/cosh(m*Pi)));
round(polcoeff(R,n))} \\ Paul D. Hanna, Aug 29 2012
-
{a(n) = my(C=1); C = cosh( serreverse( intformal( 1/sqrt( cosh(2*x +O(x^(2*n+1))) ) ) ) ); (2*n)!*polcoeff(C,2*n)}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Aug 14 2017
A193541
E.g.f.: sqrt(2)*L / (Pi*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )) where L = Lemniscate constant.
Original entry on oeis.org
1, 1, -3, -27, 441, 11529, -442827, -23444883, 1636819569, 145703137041, -16106380394643, -2164638920874507, 347592265948756521, 65724760945840254489, -14454276753061349098587, -3658147171522531111996803, 1055646229815910768764248289
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
A(x) = sqrt(2)*L/(Pi*(1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...)).
Let B(x) equal the e.g.f. of A193544, where:
B(x) = sqrt(2)*L/(Pi*(1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...))
explicitly,
B(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +...
then A(x)^2 + B(x)^2 = 2
as illustrated by:
A(x)^2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...
B(x)^2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...
...
O.g.f.: 1 + x - 3*x^2 - 27*x^3 + 441*x^4 + 11529*x^5 - 442827*x^6 +...+ a(n)*x^n +...
O.g.f.: 1/(1 - x/(1 + 4*x/(1 - 9*x/(1 + 16*x/(1 - 25*x/(1 + 36*x/(1 - 49*x/(1 + 64*x/(1-...))))))))).
-
a[ n_] := If[ n < 0, 0, With[{m = 2 n}, 2^n m! SeriesCoefficient[ JacobiND[ x, 1/2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ JacobiDN[ x, -1], {x, 0, m}]]]; (* Michael Somos, Jun 17 2016 *)
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1,cos(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));
round((2*n)!*polcoeff(R,2*n))}
A193540
E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant.
Original entry on oeis.org
1, -1, 9, -153, 4977, -261009, 20039481, -2121958377, 296297348193, -52750142341281, 11662264481073129, -3134732109393169593, 1006734732695870345937, -380718482718134681818929, 167456229155543640166939161, -84761007600911799530893148937
Offset: 0
E.g.f.: A(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
A(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...
Let B(x) equal the e.g.f. of A193543, where:
B(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...
explicitly,
B(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +...
then A(x)^-2 + B(x)^-2 = 2
as illustrated by:
A(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...
B(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...
...
O.g.f.: 1 - x + 9*x^2 - 153*x^3 + 4977*x^4 - 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +...
O.g.f.: 1/(1 + x/(1 + 8*x/(1 + 9*x/(1 + 32*x/(1 + 25*x/(1 + 72*x/(1 + 49*x/(1 + 128*x/(1+...))))))))).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- T. J. Stieltjes, LXV. Sur les dérivées de sec x, p. 181, Oeuvres complètes, tome 2, Noordhoff, 1918, 617 p.
- Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.
-
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Tan[ JacobiAmplitude[ x, -1]] / Tan[ JacobiAmplitude[ 2 x, -1] / 2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiND[ x, -1], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
Table[SeriesCoefficient[InverseSeries[Series[EllipticF[x, 1/2], {x, 0, 32}]], 2 n + 1] (2 n + 1)! 2^n, {n, 0, 15}] (* Benedict W. J. Irwin, Apr 04 2017 *)
Table[SeriesCoefficient[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2 k}] (2 k)!, {k, 0, 20}] (* Jan Mangaldan, Nov 28 2020 *)
nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *)
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1,cos(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));
round((2*n)!*polcoeff(R,2*n))}
A193542
E.g.f.: 2*L^2/(Pi^2*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )^2) where L = Lemniscate constant.
Original entry on oeis.org
1, 0, 2, 0, 0, 0, -144, 0, 0, 0, 96768, 0, 0, 0, -268240896, 0, 0, 0, 2111592333312, 0, 0, 0, -37975288540299264, 0, 0, 0, 1353569484565546795008, 0, 0, 0, -86498911610371173437669376, 0, 0, 0, 9198407234012051081051108278272, 0, 0, 0, -1536583522302562247445395779495133184
Offset: 0
E.g.f.: A(x) = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...+ a(n)*x^n/n! +...
which equals the square of the e.g.f. B(x) of A193541:
B(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiDN[ x, -1]^2, {x, 0, n}]]; (* Michael Somos, Jun 17 2016 *)
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1,cos(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));
round(n!*polcoeff(R^2,n))}
A193545
E.g.f.: 2*L^2/(Pi^2*(1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi) )^2) where L = Lemniscate constant.
Original entry on oeis.org
1, 0, -2, 0, 0, 0, 144, 0, 0, 0, -96768, 0, 0, 0, 268240896, 0, 0, 0, -2111592333312, 0, 0, 0, 37975288540299264, 0, 0, 0, -1353569484565546795008, 0, 0, 0, 86498911610371173437669376, 0, 0, 0, -9198407234012051081051108278272, 0, 0, 0, 1536583522302562247445395779495133184
Offset: 0
E.g.f.: A(x) = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...+ a(n)*x^n/n! +...
which equals the square of the e.g.f. B(x) of A193544:
B(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +...
-
{a(n)=local(R,L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1,cosh(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));
round(n!*polcoeff(R^2,n))}
A190904
a(n) = Sum_{k=0..n-1} cos(Pi*k/2)*binomial(n-1,k)*a(n-1-k)*a(k) for n > 0, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 0, -3, -12, -27, 0, 441, 3024, 11529, 0, -442827, -4390848, -23444883, 0, 1636819569, 21224560896, 145703137041, 0, -16106380394643, -257991277243392, -2164638920874507, 0, 347592265948756521
Offset: 0
-
A190904 := proc(n) option remember; `if`(n=0,1,add(((1-irem(k,2))*(-1)^ iquo(k,2))*binomial(n-1,k)*A190904(n-1-k)*A190904(k),k=0..n-1)) end:
-
a[0] = 1;
a[n_] := a[n] =
Sum[Mod[(k+1)^3, 4, -1] Binomial[n-1, k] a[n-k-1] a[k], {k, 0, n-1}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 24 2019 *)
A322218
E.g.f.: C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx, such that C(x,q)^2 - S(x,q)^2 = 1, where C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k)*x^n*y^k/n!, as an irregular triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 1, 1, 4, 1, 20, 16, 24, 1, 56, 336, 288, 384, 128, 192, 1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920, 1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040, 1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560, 1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960
Offset: 0
E.g.f. C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k) * x^(2*n)*q^(2*k)/(2*n)! starts
C(x,q) = 1 + x^2/2! + (4*q^2 + 1)*x^4/4! + (24*q^6 + 16*q^4 + 20*q^2 + 1)*x^6/6! + (192*q^12 + 128*q^10 + 384*q^8 + 288*q^6 + 336*q^4 + 56*q^2 + 1)*x^8/8! + (1920*q^20 + 1280*q^18 + 3840*q^16 + 5760*q^14 + 10176*q^12 + 5888*q^10 + 12736*q^8 + 6448*q^6 + 2352*q^4 + 120*q^2 + 1)*x^10/10! + (23040*q^30 + 15360*q^28 + 46080*q^26 + 69120*q^24 + 164352*q^22 + 141056*q^20 + 341504*q^18 + 294912*q^16 + 431616*q^14 + 385472*q^12 + 472704*q^10 + 214016*q^8 + 93280*q^6 + 10032*q^4 + 220*q^2 + 1)*x^12/12! + ...
such that C(x,q) = cosh( Integral C(q*x,q) dx ).
This irregular triangle of coefficients T(n,k) of x^(2*n)*q^(2*k)/(2*n)! in C(x,q) begins:
1;
1;
1, 4;
1, 20, 16, 24;
1, 56, 336, 288, 384, 128, 192;
1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920;
1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040;
1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560;
1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960; ...
RELATED SERIES.
S(x,q) = x + (q^2 + 1)*x^3/3! + (4*q^6 + q^4 + 10*q^2 + 1)*x^5/5! + (24*q^12 + 16*q^10 + 20*q^8 + 85*q^6 + 91*q^4 + 35*q^2 + 1)*x^7/7! + (192*q^20 + 128*q^18 + 384*q^16 + 288*q^14 + 1200*q^12 + 632*q^10 + 2737*q^8 + 1324*q^6 + 966*q^4 + 84*q^2 + 1)*x^9/9! + (1920*q^30 + 1280*q^28 + 3840*q^26 + 5760*q^24 + 10176*q^22 + 16448*q^20 + 19776*q^18 + 27568*q^16 + 49872*q^14 + 69816*q^12 + 64329*q^10 + 50941*q^8 + 26818*q^6 + 5082*q^4 + 165*q^2 + 1)*x^11/11! + ...
where C(x,q)^2 - S(x,q)^2 = 1.
-
rows = 8; m = 2 rows; s[x_, ] = x; c[, ] = 1; Do[s[x, q_] = Integrate[c[x, q] c[q x, q] + O[x]^m // Normal, x]; c[x_, q_] = 1 + Integrate[s[x, q] c[q x, q] + O[x]^m // Normal, x], {m}];
CoefficientList[#, q^2]& /@ (CoefficientList[c[x, q], x] Range[0, m]!) // DeleteCases[#, {}]& // Flatten (* Jean-François Alcover, Dec 17 2018 *)
-
{T(n,k) = my(S=x,C=1); for(i=1,2*n,
S = intformal(C*subst(C,x,q*x) +O(x^(2*n+1)));
C = 1 + intformal(S*subst(C,x,q*x)));
(2*n)!*polcoeff( polcoeff(C,2*n,x),2*k,q)}
for(n=0,10, for(k=0,n*(n-1)/2, print1( T(n,k),", "));print(""))
A286306
a(n) = coefficient of x^(2*n)/(2*n)! in exp( integral ( sn(x, 1/2) / cd(x, 1/2) ) dx).
Original entry on oeis.org
1, 1, 3, 27, 441, 11529, 442827, 23444883, 1636819569, 145703137041, 16106380394643, 2164638920874507, 347592265948756521, 65724760945840254489, 14454276753061349098587, 3658147171522531111996803, 1055646229815910768764248289, 344553616791279239828059918881
Offset: 0
G.f. = 1 + x + 3*x^2 + 27*x^3 + 441*x^4 + 11529*x^5 + 442827*x^6 + ...
E.g.f. = 1 + 1*x^2/2! + 3*x^4/4! + 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! + ...
-
a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Exp[ Integrate[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], x]], {x, 0, m}]]];
a:= With[{nmax = 110}, CoefficientList[Series[Exp[Integrate[JacobiSN[x, 1/2]/JacobiCD[x, 1/2], x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 29 2018 *)
-
{a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( exp( intformal( serreverse( intformal( (1 + x^4 + x * O(x^m))^(-1/2))))), m))};
A291207
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + x/(1 - 2^k*x/(1 + 3^k*x/(1 - 4^k*x/(1 + 5^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -3, 5, 0, 1, -1, -7, 27, 17, -2, 1, -1, -15, 167, 441, -121, 0, 1, -1, -31, 1071, 10673, -11529, -721, 5, 1, -1, -63, 6815, 262305, -1337713, -442827, 6845, 0, 1, -1, -127, 42687, 6525377, -161721441, -297209047, 23444883, 58337, -14
Offset: 0
G.f. of column k: A_k(x) = 1 - x + (1 - 2^k)*x^2 + (2^(k + 1) - 4^k + 6^k - 1)*x^3 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, -31, ...
1, 5, 27, 167, 1071, 6815, ...
0, 17, 441, 10673, 262305, 6525377, ...
-2, -121, -11529, -1337713, -161721441, -19802585281, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^i i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
Showing 1-10 of 10 results.
Comments