cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A195825 Square array T(n,k) read by antidiagonals, n>=0, k>=1, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 7, 3, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 15, 5, 3, 1, 1, 1, 1, 1, 22, 7, 4, 2, 1, 1, 1, 1, 1, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1, 56, 16, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 77, 21, 10, 4
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2011

Keywords

Comments

In the infinite square array the column k is related to the generalized m-gonal numbers, where m = k+4. For example: the first column is related to the generalized pentagonal numbers A001318. The second column is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on ... (see the program in which A195152 is a table of generalized m-gonal numbers).
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041 (see below the first row of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A195825
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. with a(0)=1]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
Conjecture: if k is odd then column k contains (k+1)/2 plateaus whose levels are the first (k+1)/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5, ... 2. Otherwise, if k is even then column k contains k/2 plateaus whose levels are the first k/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5, ... 3. The sequence A210843 gives the levels of the plateaus of column k, when k -> infinity. For the visualization of the plateaus see the graph of a column, for example see the graph of A210964. - Omar E. Pol, Jun 21 2012

Examples

			Array begins:
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    3,  2,  1,  1,  1,  1,  1,  1,  1,  1, ...
    5,  3,  2,  1,  1,  1,  1,  1,  1,  1, ...
    7,  4,  3,  2,  1,  1,  1,  1,  1,  1, ...
   11,  5,  4,  3,  2,  1,  1,  1,  1,  1, ...
   15,  7,  4,  4,  3,  2,  1,  1,  1,  1, ...
   22, 10,  5,  4,  4,  3,  2,  1,  1,  1, ...
   30, 13,  7,  4,  4,  4,  3,  2,  1,  1, ...
   42, 16, 10,  5,  4,  4,  4,  3,  2,  1, ...
   56, 21, 12,  7,  4,  4,  4,  4,  3,  2, ...
   77, 28, 14, 10,  5,  4,  4,  4,  4,  3, ...
  101, 35, 16, 12,  7,  4,  4,  4,  4,  4, ...
  135, 43, 21, 13, 10,  5,  4,  4,  4,  4, ...
  176, 55, 27, 14, 12,  7,  4,  4,  4,  4, ...
  ...
Column 1 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11, ... The column contains only one plateau: [1, 1] which has level 1 and length 2.
Column 3 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10, ... The column contains two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2.
Column 6 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21, ... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3.
		

Crossrefs

For another version see A211970.

Formula

Column k is asymptotic to exp(Pi*sqrt(2*n/(k+2))) / (8*sin(Pi/(k+2))*n). - Vaclav Kotesovec, Aug 14 2017

A195848 Expansion of 1 / f(-x^1, -x^5) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 7, 10, 12, 13, 14, 16, 21, 27, 32, 35, 38, 44, 54, 67, 78, 86, 94, 107, 128, 153, 176, 194, 213, 241, 282, 331, 376, 415, 456, 512, 590, 680, 767, 845, 928, 1037, 1180, 1345, 1506, 1657, 1818, 2020, 2278, 2570, 2862, 3142, 3442
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also column 4 of A195825, therefore this sequence contains two plateaus: [1, 1, 1, 1, 1], [4, 4, 4]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 26 2012
The number of partitions of n into parts congruent to 0, 1 or 5 ( mod 6 ). - Peter Bala, Dec 09 2020

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
G.f. = 1/q + q^2 + q^5 + q^8 + q^11 + 2*q^14 + 3*q^17 + 4*q^20 + 4*q^23 + 4*q^26 + ...
		

Crossrefs

Column 1 of triangle A195838. Also 1 together with the row sums of triangle A195838. Column 4 of array A195825.
Cf. A089802.

Programs

  • Maple
    A001082 := proc(n)
            if type(n,'even') then
                    n*(3*n-4)/4 ;
            else
                    (n-1)*(3*n+1)/4 ;
            end if;
    end proc:
    A195838 := proc(n,k)
            option remember;
            local ks,a,j ;
            if A001082(k+1) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A001082(j+1) <= n-1 then
                                    a := a+procname(n-1,j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A001082(k+1) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1,1) ;
            end if;
    end proc:
    A195848 := proc(n)
            A195838(n+1,1) ;
    end proc:
    seq(A195848(n),n=0..60) ; # R. J. Mathar, Oct 07 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]^2), {x, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    a[ n_] := SeriesCoefficient[ 2 q^(3/8) / (QPochhammer[ q, q^2] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    nmax = 60; CoefficientList[Series[Product[(1+x^k) / ((1+x^(3*k)) * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 07 2012 */
    From Omar E. Pol, Jun 10 2012: (Start)
    (GW-BASIC)' A program with two A-numbers:
    10 Dim A001082(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 58: For j = 1 to n
    30 If A001082(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A001082(j))
    40 Next j: Print a(n-1);: Next n (End)

Formula

Expansion of 1 / (psi(x^3) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(1/3) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)^2) in powers of q. - Michael Somos, Jun 07 2012
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, 1, ...]. - Michael Somos, Oct 18 2014
Convolution inverse of A089802. - Michael Somos, Oct 18 2014
a(n) ~ exp(Pi*sqrt(n/3))/(4*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
From Peter Bala, Dec 09 2020: (Start)
O.g.f.: 1/( Product_{n >= 1} (1 - x^(6*n-5))*(1 - x^(6*n-1))*(1 - x^(6*n)) ).
a(n) = a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - - ... (with the convention a(n) = 0 for negative n), where 1, 5, 8, 16, ... is the sequence of generalized octagonal numbers A001082. (End)

Extensions

New sequence name from Michael Somos, Oct 18 2014

A211971 Column 0 of square array A211970 (in which column 1 is A000041).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 16, 24, 36, 54, 78, 112, 160, 224, 312, 432, 590, 802, 1084, 1452, 1936, 2568, 3384, 4440, 5800, 7538, 9758, 12584, 16160, 20680, 26376, 33520, 42468, 53644, 67552, 84832, 106246, 132706, 165344, 205512, 254824, 315256, 389168, 479368
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

Partial sums give A015128. - Omar E. Pol, Jan 09 2014

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Differences[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 60}]]}] (* Vaclav Kotesovec, Oct 25 2016 *)
    CoefficientList[Series[(1 - x)/EllipticTheta[4, 0, x], {x, 0, 43}], x] (* Robert G. Wilson v, Mar 06 2018 *)

Formula

a(n) ~ exp(Pi*sqrt(n))*Pi / (16*n^(3/2)) * (1 - (3/Pi + Pi/4)/sqrt(n) + (3/2 + 3/Pi^2+ Pi^2/24)/n). - Vaclav Kotesovec, Oct 25 2016, extended Nov 04 2016
G.f.: (1 - x)/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Mar 05 2018

A210843 Level of the n-th plateau of the column k of the square array A195825, when k -> infinity.

Original entry on oeis.org

1, 4, 13, 35, 86, 194, 415, 844, 1654, 3133, 5773, 10372, 18240, 31449, 53292, 88873, 146095, 236977, 379746, 601656, 943305, 1464501, 2252961, 3436182, 5198644, 7805248, 11634685, 17224795, 25336141, 37038139, 53828275, 77792869
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2012

Keywords

Comments

Also the first (k+1)/2 terms of this sequence are the levels of the (k+1)/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 2, if k is odd.
Also the first k/2 terms of this sequence are the levels of the k/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 3, if k is a positive even number.
For the visualization of the plateaus see the graph of the sequences mentioned in crossrefs section (columns k=1..10 of A195825), for example see the graph of A210964.
Also numbers that are repeated in column k of square array A195825, when k -> infinity.
Note that the definition and the comments related to the square array A195825 mentioned above are also valid for the square array A211970, since both arrays contains the same columns, if k >= 1.
Is this the EULER transform of 4, 3, 3, 3, 3, 3, 3...?

Examples

			Column 1 of A195825 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. So a(1) = 1.
Column 3 of A195825 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains only two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. So a(1)= 1 and a(2) = 2.
Column 6 of A195825 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. So a(1) = 1, a(2) = 4 and a(3) = 13.
		

Crossrefs

Partial sums of A000716. Column 3 of A210764.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^3,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)

Formula

From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(2*n)/Pi * A000716(n).
a(n) ~ exp(sqrt(2*n)*Pi) / (8*Pi*n).
(End)

A195849 Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1], [4, 4, 4, 4], [13, 13]. For more information see A210843. See also other columns of A195825. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 6 (mod 7). - Ludovic Schwob, Aug 05 2021

Crossrefs

Programs

  • Maple
    A118277 := proc(n)
            7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ;
    end proc:
    A195839 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A118277(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A118277(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A118277(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195849 := proc(n)
            A195839(n+1,1) ;
    end proc:
    seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    m = 61;
    Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017

A210964 Column 10 of square array A195825. Also column 1 of triangle A210954. Also 1 together with the row sums of triangle A210954.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 194, 195
Offset: 0

Views

Author

Omar E. Pol, Jun 16 2012

Keywords

Comments

Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13, 13], [35, 35, 35, 35, 35], [86, 86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 / ((1 - x^(12*k)) * (1 - x^(12*k-1)) * (1 - x^(12*k-11))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)

Formula

Expansion of 1 / f(-x, -x^11) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 10 2015
Partitions of n into parts of the form 12*k, 12*k+1, 12*k+11. - Michael Somos, Jan 10 2015
Euler transform of period 12 sequence [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...]. - Michael Somos, Jan 10 2015
G.f.: Product_{k>0} 1 / ((1 - x^(12*k)) * (1 - x^(12*k - 1)) * (1 - x^(12*k - 11))).
Convolution inverse of A247133.
a(n) ~ sqrt(2)*(1+sqrt(3)) * exp(Pi*sqrt(n/6)) / (8*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284372(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
a(n) = a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - - (with the convention a(n) = 0 for negative n), where 1, 11, 14, 34, ... is the sequence of generalized 14-gonal numbers A195818. - Peter Bala, Dec 10 2020

A195850 Column 6 of array A195825. Also column 1 of triangle A195840. Also 1 together with the row sums of triangle A195840.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 36, 38, 44, 54, 67, 77, 83, 86, 89, 95, 107, 128, 152, 173, 186, 194, 202, 216, 242, 281, 328, 368, 396, 415, 434, 464, 514, 588, 672, 748, 803, 844
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 7 (mod 8). - Peter Bala, Dec 10 2020

Crossrefs

Formula

G.f.: Product_{k>=1} 1/((1 - x^(8*k))*(1 - x^(8*k-1))*(1 - x^(8*k-7))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n)/2) / (4*sqrt(2-sqrt(2))*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-7) - a(n-10) - a(n-22) + + - - (with the convention a(n) = 0 for negative n), where 1, 7, 10, 22, ... is the sequence of generalized 10-gonal numbers A074377. - Peter Bala, Dec 10 2020

A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4], [13, 13, 13, 13], [35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Maple
    A195160 := proc(n)
            (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ;
    end proc:
    A195841 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A195160(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A195160(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A195160(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195851 := proc(n)
            A195841(n+1,1) ;
    end proc:
    seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011

Formula

G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017

A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 195, 197, 203, 216, 242, 281
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Mathematica
    T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - Vaclav Kotesovec, Aug 14 2017

Extensions

More terms from Omar E. Pol, Jun 10 2012

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.
Showing 1-10 of 13 results. Next