A197930 Numbers n such that the number of distinct residues in x^(n-1) (mod n), x=0..n-1, equals n.
1, 2, 6, 10, 14, 22, 26, 30, 34, 38, 42, 46, 58, 62, 74, 78, 82, 86, 94, 102, 106, 110, 114, 118, 122, 134, 138, 142, 146, 158, 166, 170, 174, 178, 182, 194, 202, 206, 210, 214, 218, 222, 226, 230, 254, 258, 262, 266, 274, 278, 282, 290, 298, 302, 314, 318
Offset: 1
Keywords
Examples
a(8) = 30 because x^29 == 0,1,2, …,28,29 (mod 30) with 30 distinct residues.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={}; Table[If[Length[Union[PowerMod[Range[0,n-1],n-1,n]]]==n, AppendTo[lst,n]], {n,320}]; lst Select[Range[400],Length[Union[PowerMod[Range[0,#-1],#-1,#]]]==#&] (* Harvey P. Dale, Nov 06 2016 *)
Formula
n such that A197929(n) = n.
Comments